Location and path planning for urban emergency rescue by a hybrid clustering and ant colony algorithm approach

蚁群优化算法 计算机科学 聚类分析 启发式 路径(计算) 任务(项目管理) 运动规划 紧急救援 过程(计算) 蚁群 搜救 运筹学 人工智能 工程类 计算机网络 机器人 操作系统 医学 系统工程 医疗急救
作者
Bing Yang,Lunwen Wu,Jian Xiong,Yuxin Zhang,L. Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110783-110783 被引量:1
标识
DOI:10.1016/j.asoc.2023.110783
摘要

Rescue station setup and rescue path planning are two important tasks in urban emergency rescue. The former task ensures rescue response capability and the latter task provides effective rescue solutions. When emergencies occur in cities, evacuees are distributed along the urban road network. Rescue resources refer to rescue vehicles whose available number and capacity are both limited. With the constraints of rescue resources and the number of rescues, this paper aims to simultaneously optimize the tasks of rescue station setup and rescue path planning. In the addressed scenario, the priority of each evacuee is quantified as a weight value that is used as the main optimization objective. To solve the problem, a comprehensive urban emergency rescue planning approach is proposed. The proposed approach consists of components of road network processing, road network weight calculation, rescue station setup and rescue path planning. For the setup of rescue stations, this paper employs a clustering method to provide a set of high-quality candidate rescue stations for subsequent path planning based on the locations of evacuees and the road network structure. For rescue path planning, an improved ant colony optimization algorithm is developed. The proposed method is called the planning algorithm with clustering and improved ant colony optimization (PA-C-IACO). The proposed PA-C-IACO redefines the degree of heuristic and pheromone concentration increments for transfer between intersections in the ant colony algorithm and incorporates a reward mechanism during the pheromone update process. Experimental results on six different size datasets show that PA-C-IACO outperforms state-of-the-art algorithms and shows good robustness and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
朱妮妮完成签到,获得积分10
1秒前
Sli完成签到,获得积分10
1秒前
aaaa完成签到 ,获得积分10
1秒前
dew应助DrSong采纳,获得20
1秒前
1秒前
1秒前
一年5篇发布了新的文献求助10
1秒前
kailash完成签到,获得积分10
1秒前
yyy完成签到,获得积分10
2秒前
2秒前
史双龙发布了新的文献求助10
3秒前
无敌大蜥蜴完成签到,获得积分20
3秒前
3秒前
qq完成签到,获得积分10
3秒前
4秒前
橙子快跑完成签到,获得积分10
4秒前
yogurt完成签到,获得积分10
4秒前
kmkz完成签到,获得积分10
4秒前
清脆圆子发布了新的文献求助10
5秒前
zhengweihai完成签到,获得积分10
5秒前
5秒前
光电效应完成签到,获得积分10
5秒前
是苗苗丫完成签到,获得积分10
5秒前
wyw发布了新的文献求助30
5秒前
高级的百香果完成签到,获得积分10
7秒前
halo完成签到 ,获得积分10
7秒前
Owen应助tang采纳,获得10
7秒前
天天快乐应助糙糙科研采纳,获得10
7秒前
soul完成签到,获得积分10
7秒前
7秒前
敏静完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
cdsd发布了新的文献求助10
9秒前
shiyin完成签到,获得积分10
9秒前
9秒前
犹豫耳机完成签到,获得积分10
9秒前
大阳完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151290
求助须知:如何正确求助?哪些是违规求助? 4347025
关于积分的说明 13535481
捐赠科研通 4189687
什么是DOI,文献DOI怎么找? 2297672
邀请新用户注册赠送积分活动 1297961
关于科研通互助平台的介绍 1242633