Asymmetric Transfer Hashing With Adaptive Bipartite Graph Learning

散列函数 二部图 计算机科学 学习迁移 领域(数学分析) 图形 特征(语言学) 理论计算机科学 特征向量 模式识别(心理学) 人工智能 数学 数学分析 语言学 哲学 计算机安全
作者
Jianglin Lu,Jie Zhou,Yudong Chen,Witold Pedrycz,Kwok-Wai Hung
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 533-545 被引量:7
标识
DOI:10.1109/tcyb.2022.3232787
摘要

Thanks to the efficient retrieval speed and low storage consumption, learning to hash has been widely used in visual retrieval tasks. However, the known hashing methods assume that the query and retrieval samples lie in homogeneous feature space within the same domain. As a result, they cannot be directly applied to heterogeneous cross-domain retrieval. In this article, we propose a generalized image transfer retrieval (GITR) problem, which encounters two crucial bottlenecks: 1) the query and retrieval samples may come from different domains, leading to an inevitable domain distribution gap and 2) the features of the two domains may be heterogeneous or misaligned, bringing up an additional feature gap. To address the GITR problem, we propose an asymmetric transfer hashing (ATH) framework with its unsupervised/semisupervised/supervised realizations. Specifically, ATH characterizes the domain distribution gap by the discrepancy between two asymmetric hash functions, and minimizes the feature gap with the help of a novel adaptive bipartite graph constructed on cross-domain data. By jointly optimizing asymmetric hash functions and the bipartite graph, not only can knowledge transfer be achieved but information loss caused by feature alignment can also be avoided. Meanwhile, to alleviate negative transfer, the intrinsic geometrical structure of single-domain data is preserved by involving a domain affinity graph. Extensive experiments on both single-domain and cross-domain benchmarks under different GITR subtasks indicate the superiority of our ATH method in comparison with the state-of-the-art hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李瓦片儿完成签到,获得积分10
1秒前
树懒发布了新的文献求助40
1秒前
2秒前
3秒前
快乐小狗发布了新的文献求助10
4秒前
希音完成签到,获得积分10
6秒前
天真醉波完成签到 ,获得积分10
6秒前
在水一方应助等待青枫采纳,获得10
6秒前
田様应助waterimagic2采纳,获得10
6秒前
qiuy完成签到,获得积分20
6秒前
6秒前
xubee发布了新的文献求助10
8秒前
8秒前
无名完成签到,获得积分10
8秒前
树123发布了新的文献求助10
9秒前
gyokaki完成签到 ,获得积分10
9秒前
10秒前
小鸟游完成签到,获得积分10
11秒前
火星上冥茗完成签到 ,获得积分10
12秒前
linxi发布了新的文献求助10
13秒前
14秒前
14秒前
zho发布了新的文献求助10
15秒前
启程牛牛完成签到,获得积分0
17秒前
所所应助陈槊诸采纳,获得10
19秒前
mamahaha完成签到 ,获得积分10
19秒前
aich完成签到,获得积分10
20秒前
zijia完成签到,获得积分10
21秒前
kmelo完成签到,获得积分10
21秒前
22秒前
霸气的书雁完成签到,获得积分10
25秒前
25秒前
美好芳完成签到 ,获得积分10
25秒前
stick发布了新的文献求助10
26秒前
科研通AI5应助快乐小狗采纳,获得10
27秒前
情怀应助无奈夜蕾采纳,获得30
29秒前
大模型应助余任游采纳,获得10
29秒前
漂亮流沙发布了新的文献求助10
29秒前
stick完成签到,获得积分10
30秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225