已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A systematic review and analysis of deep learning-based underwater object detection

水下 目标检测 计算机科学 人工智能 计算机视觉 深度学习 机器学习 模式识别(心理学) 地质学 海洋学
作者
Shubo Xu,Minghua Zhang,Wei Song,Haibin Mei,Qi He,Antonio Liotta
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:527: 204-232 被引量:175
标识
DOI:10.1016/j.neucom.2023.01.056
摘要

Underwater object detection is one of the most challenging research topics in computer vision technology. The complex underwater environment makes underwater images suffer from high noise, low visibility, blurred edges, low contrast and color deviation, which brings significant challenges to underwater object detection tasks. In underwater object detection tasks, traditional object detection methods often perform poorly in terms of accuracy and generalization capabilities. Underwater object detection requires accurate, stable, generalizable, real-time and lightweight detection models, for which many researchers have proposed various underwater object detection techniques based on deep learning. Although many outstanding results have been achieved on underwater object detection over the years, the research status of underwater object detection techniques are still lack of unified induction, and some existing problems need to be further probed from the latest perspective. In addition, previous reviews lack analysis on the relationship between underwater image enhancement and object detection. Therefore, this paper provides a comprehensive review of the current research challenges, future development trends, and potential applications of underwater object detection techniques. More importantly, this paper has explored the internal relationship between underwater image enhancement and object detection, and analyzed the possible implementation manners of underwater image enhancement in the object detection task in order to further enhance its benefits. The experiments show the performances of current underwater image enhancement and state-of-the-art object detection algorithms, point out their limitations, and indicate that there is not a strict positive correlation between underwater image enhancement and the accuracy improvement of object detection. The domain shift caused by underwater image enhancement cannot be ignored. This paper can be regarded as a guide for future works on underwater object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助张鱼丸子采纳,获得10
刚刚
个性的舞蹈完成签到 ,获得积分10
1秒前
sunny发布了新的文献求助10
4秒前
GGBOND完成签到,获得积分10
7秒前
神奇五子棋完成签到 ,获得积分10
7秒前
帅气的安柏完成签到,获得积分10
10秒前
大个应助动感光波采纳,获得10
10秒前
文章发的多多的完成签到,获得积分10
12秒前
orixero应助着急的三德采纳,获得10
12秒前
impending完成签到,获得积分10
15秒前
梓翔发布了新的文献求助10
16秒前
听山河入梦关注了科研通微信公众号
16秒前
pegasus0802完成签到,获得积分10
17秒前
NexusExplorer应助wmz采纳,获得30
17秒前
Moment完成签到,获得积分10
18秒前
山野的雾完成签到 ,获得积分10
18秒前
czy完成签到 ,获得积分10
19秒前
heyan完成签到,获得积分10
23秒前
冷酷恶天完成签到 ,获得积分10
24秒前
CipherSage应助想学习的西瓜采纳,获得10
24秒前
25秒前
lmg完成签到 ,获得积分10
25秒前
Sunny完成签到 ,获得积分10
28秒前
29秒前
端庄谷南完成签到 ,获得积分10
29秒前
30秒前
科研通AI5应助Cecila采纳,获得10
30秒前
完美世界应助梓翔采纳,获得10
30秒前
32秒前
迟归完成签到 ,获得积分10
33秒前
lk发布了新的文献求助10
34秒前
PetrichorF完成签到 ,获得积分10
36秒前
37秒前
HH完成签到 ,获得积分10
37秒前
liuheqian发布了新的文献求助10
40秒前
Eileen完成签到 ,获得积分10
40秒前
zzzzzzz完成签到 ,获得积分10
40秒前
43秒前
wmz发布了新的文献求助30
44秒前
徐志豪完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185578
求助须知:如何正确求助?哪些是违规求助? 4370957
关于积分的说明 13611619
捐赠科研通 4223228
什么是DOI,文献DOI怎么找? 2316267
邀请新用户注册赠送积分活动 1314876
关于科研通互助平台的介绍 1263826