A systematic review and analysis of deep learning-based underwater object detection

水下 目标检测 计算机科学 人工智能 计算机视觉 深度学习 机器学习 模式识别(心理学) 地质学 海洋学
作者
Shubo Xu,Minghua Zhang,Wei Song,Haibin Mei,Qi He,Antonio Liotta
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:527: 204-232 被引量:148
标识
DOI:10.1016/j.neucom.2023.01.056
摘要

Underwater object detection is one of the most challenging research topics in computer vision technology. The complex underwater environment makes underwater images suffer from high noise, low visibility, blurred edges, low contrast and color deviation, which brings significant challenges to underwater object detection tasks. In underwater object detection tasks, traditional object detection methods often perform poorly in terms of accuracy and generalization capabilities. Underwater object detection requires accurate, stable, generalizable, real-time and lightweight detection models, for which many researchers have proposed various underwater object detection techniques based on deep learning. Although many outstanding results have been achieved on underwater object detection over the years, the research status of underwater object detection techniques are still lack of unified induction, and some existing problems need to be further probed from the latest perspective. In addition, previous reviews lack analysis on the relationship between underwater image enhancement and object detection. Therefore, this paper provides a comprehensive review of the current research challenges, future development trends, and potential applications of underwater object detection techniques. More importantly, this paper has explored the internal relationship between underwater image enhancement and object detection, and analyzed the possible implementation manners of underwater image enhancement in the object detection task in order to further enhance its benefits. The experiments show the performances of current underwater image enhancement and state-of-the-art object detection algorithms, point out their limitations, and indicate that there is not a strict positive correlation between underwater image enhancement and the accuracy improvement of object detection. The domain shift caused by underwater image enhancement cannot be ignored. This paper can be regarded as a guide for future works on underwater object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助滴滴滴采纳,获得10
刚刚
怡然的扬完成签到,获得积分10
1秒前
peach发布了新的文献求助10
1秒前
1秒前
闪闪的心锁完成签到,获得积分20
2秒前
黑宝坨发布了新的文献求助10
2秒前
2秒前
好好好完成签到,获得积分10
2秒前
云山发布了新的文献求助10
3秒前
wxy完成签到,获得积分10
3秒前
3秒前
搜集达人应助zm采纳,获得10
5秒前
5秒前
5秒前
希望天下0贩的0应助hxy采纳,获得10
5秒前
RayLam发布了新的文献求助10
6秒前
7秒前
HY完成签到,获得积分10
7秒前
会飞的猪发布了新的文献求助10
7秒前
嘚嘚嘚发布了新的文献求助30
8秒前
9秒前
852应助HZC采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
鸣笛应助莫泉河采纳,获得10
10秒前
xiuuu发布了新的文献求助10
11秒前
XCL应助孤独千愁采纳,获得10
11秒前
艾尚淑关注了科研通微信公众号
11秒前
史昊昊完成签到,获得积分20
11秒前
12秒前
汪兆艺发布了新的文献求助10
13秒前
13秒前
14秒前
无情的豆芽完成签到 ,获得积分10
14秒前
Forever完成签到,获得积分10
14秒前
朱祥龙完成签到,获得积分10
14秒前
14秒前
zy发布了新的文献求助10
15秒前
史昊昊发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574974
求助须知:如何正确求助?哪些是违规求助? 3994693
关于积分的说明 12366184
捐赠科研通 3668034
什么是DOI,文献DOI怎么找? 2021694
邀请新用户注册赠送积分活动 1055691
科研通“疑难数据库(出版商)”最低求助积分说明 943062