清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using generative AI to investigate medical imagery models and datasets

计算机科学 反事实思维 分类器(UML) 人工智能 机器学习 可视化 工作流程 生成模型 生成语法 任务(项目管理) 哲学 管理 认识论 数据库 经济
作者
Oran Lang,Doron Stupp,Ilana Traynis,Heather Cole-Lewis,Chloe R. Bennett,Courtney R. Lyles,Charles Lau,Michal Irani,Christopher Semturs,Dale R. Webster,Greg S. Corrado,Avinatan Hassidim,Yossi Matias,Yun Liu,Naama Hammel,Boris Babenko
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:102: 105075-105075 被引量:18
标识
DOI:10.1016/j.ebiom.2024.105075
摘要

BackgroundAI models have shown promise in performing many medical imaging tasks. However, our ability to explain what signals these models have learned is severely lacking. Explanations are needed in order to increase the trust of doctors in AI-based models, especially in domains where AI prediction capabilities surpass those of humans. Moreover, such explanations could enable novel scientific discovery by uncovering signals in the data that aren't yet known to experts.MethodsIn this paper, we present a workflow for generating hypotheses to understand which visual signals in images are correlated with a classification model's predictions for a given task. This approach leverages an automatic visual explanation algorithm followed by interdisciplinary expert review. We propose the following 4 steps: (i) Train a classifier to perform a given task to assess whether the imagery indeed contains signals relevant to the task; (ii) Train a StyleGAN-based image generator with an architecture that enables guidance by the classifier ("StylEx"); (iii) Automatically detect, extract, and visualize the top visual attributes that the classifier is sensitive towards. For visualization, we independently modify each of these attributes to generate counterfactual visualizations for a set of images (i.e., what the image would look like with the attribute increased or decreased); (iv) Formulate hypotheses for the underlying mechanisms, to stimulate future research. Specifically, present the discovered attributes and corresponding counterfactual visualizations to an interdisciplinary panel of experts so that hypotheses can account for social and structural determinants of health (e.g., whether the attributes correspond to known patho-physiological or socio-cultural phenomena, or could be novel discoveries).FindingsTo demonstrate the broad applicability of our approach, we present results on eight prediction tasks across three medical imaging modalities—retinal fundus photographs, external eye photographs, and chest radiographs. We showcase examples where many of the automatically-learned attributes clearly capture clinically known features (e.g., types of cataract, enlarged heart), and demonstrate automatically-learned confounders that arise from factors beyond physiological mechanisms (e.g., chest X-ray underexposure is correlated with the classifier predicting abnormality, and eye makeup is correlated with the classifier predicting low hemoglobin levels). We further show that our method reveals a number of physiologically plausible, previously-unknown attributes based on the literature (e.g., differences in the fundus associated with self-reported sex, which were previously unknown).InterpretationOur approach enables hypotheses generation via attribute visualizations and has the potential to enable researchers to better understand, improve their assessment, and extract new knowledge from AI-based models, as well as debug and design better datasets. Though not designed to infer causality, importantly, we highlight that attributes generated by our framework can capture phenomena beyond physiology or pathophysiology, reflecting the real world nature of healthcare delivery and socio-cultural factors, and hence interdisciplinary perspectives are critical in these investigations. Finally, we will release code to help researchers train their own StylEx models and analyze their predictive tasks of interest, and use the methodology presented in this paper for responsible interpretation of the revealed attributes.FundingGoogle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ糖完成签到 ,获得积分10
16秒前
莹yy完成签到 ,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
美丽的楼房完成签到 ,获得积分10
2分钟前
jessie完成签到 ,获得积分10
2分钟前
夜行完成签到,获得积分10
2分钟前
ybwei2008_163完成签到,获得积分10
2分钟前
2分钟前
wm发布了新的文献求助10
2分钟前
结实山水完成签到 ,获得积分10
2分钟前
思源应助zhuuuuuuu采纳,获得10
2分钟前
wm完成签到,获得积分10
3分钟前
dodo应助壬湦采纳,获得200
3分钟前
Balance Man完成签到 ,获得积分10
3分钟前
zhuuuuuuu完成签到,获得积分20
3分钟前
大力水手完成签到 ,获得积分10
4分钟前
光合作用完成签到,获得积分10
5分钟前
lzxbarry完成签到,获得积分0
5分钟前
widesky777完成签到 ,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
CJW完成签到 ,获得积分10
6分钟前
ldjldj_2004完成签到 ,获得积分10
6分钟前
1117完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
水哥完成签到 ,获得积分10
8分钟前
勤奋的灯完成签到 ,获得积分10
8分钟前
Party完成签到 ,获得积分10
8分钟前
卓矢完成签到 ,获得积分10
10分钟前
方白秋完成签到,获得积分10
10分钟前
Sunny完成签到,获得积分10
10分钟前
11分钟前
noss发布了新的文献求助10
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
袁青寒发布了新的文献求助10
11分钟前
袁青寒发布了新的文献求助10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206222
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666373
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805