已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction

计算机科学 级联 成对比较 卷积神经网络 人工智能 图形 图遍历 深度学习 模式识别(心理学) 理论计算机科学 数据挖掘 化学 色谱法
作者
Sihui Li,Rui Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:175: 106285-106285 被引量:6
标识
DOI:10.1016/j.neunet.2024.106285
摘要

Graph neural networks (GNNs) have recently grown in popularity for disease prediction. Existing GNN-based methods primarily build the graph topological structure around a single modality and combine it with other modalities to acquire feature representations of acquisitions. The complicated relationship in each modality, however, may not be well highlighted due to its specificity. Further, relatively shallow networks restrict adequate extraction of high-level features, affecting disease prediction performance. Accordingly, this paper develops a new interactive deep cascade spectral graph convolutional network with multi-relational graphs (IDCGN) for disease prediction tasks. Its crucial points lie in constructing multiple relational graphs and dual cascade spectral graph convolution branches with interaction (DCSGBI). Specifically, the former designs a pairwise imaging-based edge generator and a pairwise non-imaging-based edge generator from different modalities by devising two learnable networks, which adaptively capture graph structures and provide various views of the same acquisition to aid in disease diagnosis. Again, DCSGBI is established to enrich high-level semantic information and low-level details of disease data. It devises a cascade spectral graph convolution operator for each branch and incorporates the interaction strategy between different branches into the network, successfully forming a deep model and capturing complementary information from diverse branches. In this manner, more favorable and sufficient features are learned for a reliable diagnosis. Experiments on several disease datasets reveal that IDCGN exceeds state-of-the-art models and achieves promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的青亦给神勇的青亦的求助进行了留言
1秒前
辣椒完成签到 ,获得积分10
1秒前
BZPL发布了新的文献求助10
2秒前
2秒前
CipherSage应助wjnjennifer采纳,获得10
5秒前
5秒前
SYLH应助李子涵采纳,获得10
5秒前
cc完成签到 ,获得积分10
6秒前
re完成签到,获得积分20
6秒前
毓汐完成签到,获得积分10
9秒前
雨洋完成签到,获得积分10
10秒前
re发布了新的文献求助10
10秒前
11秒前
羊呀呀完成签到,获得积分10
13秒前
结实的小土豆完成签到 ,获得积分10
17秒前
17秒前
17秒前
传奇3应助re采纳,获得10
17秒前
科研通AI5应助好奇宝宝采纳,获得10
18秒前
小章鱼发布了新的文献求助10
18秒前
19秒前
陈海伦完成签到 ,获得积分10
20秒前
sciAAA完成签到,获得积分10
20秒前
Brain完成签到 ,获得积分10
20秒前
suicone发布了新的文献求助10
20秒前
Zhang完成签到 ,获得积分10
21秒前
lerrygg发布了新的文献求助40
21秒前
鹰头猫完成签到,获得积分10
21秒前
别找了睡觉吧完成签到 ,获得积分10
22秒前
22秒前
研友_85yrY8发布了新的文献求助10
22秒前
echo完成签到 ,获得积分10
23秒前
甜美砖家完成签到 ,获得积分10
24秒前
HEIKU完成签到,获得积分0
24秒前
外向傲霜发布了新的文献求助10
24秒前
Ji完成签到,获得积分10
25秒前
陈欣瑶完成签到 ,获得积分10
25秒前
CMJ完成签到,获得积分20
26秒前
26秒前
Ania99完成签到 ,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472