胶粘剂
材料科学
光热治疗
纳米技术
涂层
纳米颗粒
纳米结构
润湿
表面能
复合材料
图层(电子)
作者
Jinfei Wei,Weidong Liang,Mingyuan Mao,Bucheng Li,Junping Zhang
标识
DOI:10.1002/asia.202400110
摘要
Photothermal superhydrophobic coatings hold great promise in addressing the limitations of conventional superhydrophobic anti-icing coatings. However, developing such coatings with excellent impalement resistance, mechanical robustness and weather resistance remains a significant challenge. Here, we report facile preparation of robust photothermal superhydrophobic coatings with all the above advantages. The coatings were prepared by spraying a dispersion consisting of fluorinated silica nanoparticles, a silicone-modified polyester adhesive and photothermal carbon black nanoparticles onto Al alloy plates followed by thermal curing. Thermal curing caused migration of perfluorodecyl polysiloxane from within the coatings to the surface, effectively maintaining a low surface energy despite the presence of the adhesive. Therefore, combined with the hierarchical micro-/nanostructure, dense yet rough nanostructure, adhesion of the adhesive and chemically inert components, the coatings exhibited remarkable superhydrophobicity, impalement resistance, mechanical robustness and weather resistance. Furthermore, the coatings demonstrated excellent photothermal effect even in the -10 °C, 80 % relative humidity and weak sunlight (0.2 sun) environment. Consequently, the coatings showed excellent passive anti-icing and active de-icing performance. Moreover, the coatings have good generalizability and scalability. We are confident that this study will accelerate the practical implementation of photothermal superhydrophobic coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI