Passive chip-scale resonant optical gyroscope with sub-20-deg/hour/√Hz performance

陀螺仪 炸薯条 比例(比率) 光电子学 材料科学 物理 电子工程 计算机科学 电信 工程类 量子力学
作者
Adele N. Zawada,Warren Jin,Nathan C. Abrams,Avi Feshali,Mario Paniccia,Michel J. F. Digonnet
标识
DOI:10.1117/12.3012146
摘要

This paper describes the progress made in developing a resonant optical gyroscope fabricated with a silicon-nitride (SiN) waveguide using CMOS-compatible processes. The ultra-low loss of SiN waveguides allows ring resonators to be fabricated with small footprints (~1 cm2) while achieving higher Q-factors (~108) than similar resonators made from other materials. For this reason, SiN is a very promising platform for developing a miniaturized optical gyroscope with tactical-grade specifications, which require an angular random walk (ARW) of 0.05 deg/h/√Hz and a drift of 10 deg/h. Our first-generation SiN ring gyro, reported in 2022, had an affective diameter of 11.6 mm, a perimeter of 37 mm and a finesses of 1270. When interrogated with a 10-kHz linewidth laser, it had a measured ARW of 1.3 deg/h/√Hz and a drift of 4000 deg/h, and its dominant noise was backscattering noise. In this paper, we present a second-generation of SiN gyro with a longer ring waveguide and a lower finesse to reduce the backscattering noise. This multi-turn ring has the shape of a spiral with 33 turns and an average diameter of 12.2 mm, a waveguide length of 1.2 m, and a finesse of 30. The laser linewidth was also decreased to 100 Hz to reduce the dominant noise sources, including laser frequency noise and backscattering noise. The reported ARW of this new gyro is 0.28 deg/√h, which is a factor of 4.5 lower than that of the first-generation gyro. After splicing several of the components together to reduce instabilities due to mechanical connectors, the drift was reduced to 500 deg/h. This work provides an incentive to move towards integrating more components on the chip. With continued research, this technology could soon meet the performance requirements of a wide variety of navigation-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
早早干饭完成签到,获得积分10
1秒前
tuanzi发布了新的文献求助10
1秒前
奶昔发布了新的文献求助10
2秒前
3秒前
哈喽发布了新的文献求助10
3秒前
梅哈完成签到 ,获得积分10
5秒前
星月夜完成签到,获得积分10
6秒前
小蘑菇应助3002采纳,获得10
6秒前
李先生发布了新的文献求助10
8秒前
9秒前
直角圆圈发布了新的文献求助10
10秒前
11秒前
zzz完成签到,获得积分10
11秒前
didi完成签到,获得积分20
13秒前
13秒前
畅快山兰发布了新的文献求助10
13秒前
李健应助qu采纳,获得10
13秒前
13秒前
orixero应助积极香菇采纳,获得10
14秒前
归尘发布了新的文献求助10
15秒前
科研通AI5应助bin采纳,获得10
15秒前
爆米花应助hbgsns采纳,获得20
15秒前
归尘完成签到,获得积分10
16秒前
16秒前
三三四发布了新的文献求助10
16秒前
ZJakariae应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
仙女完成签到 ,获得积分10
18秒前
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365