Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
shenxiaohui发布了新的文献求助10
1秒前
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
wangfeng发布了新的文献求助10
1秒前
今后应助科研通管家采纳,获得10
2秒前
林婷应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
田様应助冷傲的元容采纳,获得10
2秒前
张晓东应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
2秒前
充电宝应助搞怪网络采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
852应助cha236采纳,获得10
3秒前
小二郎应助疯狂老登采纳,获得10
3秒前
CipherSage应助cryjslong采纳,获得10
3秒前
今后应助sunny采纳,获得10
3秒前
含蓄心锁发布了新的文献求助10
4秒前
jin完成签到,获得积分10
4秒前
kstarter发布了新的文献求助10
4秒前
baobaonaixi完成签到,获得积分10
4秒前
王自信完成签到,获得积分10
4秒前
HWei完成签到,获得积分10
4秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892864
求助须知:如何正确求助?哪些是违规求助? 3435760
关于积分的说明 10794996
捐赠科研通 3160942
什么是DOI,文献DOI怎么找? 1745739
邀请新用户注册赠送积分活动 843006
科研通“疑难数据库(出版商)”最低求助积分说明 787020