Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier]
卷期号:363: 123058-123058 被引量:33
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹贰叁肆发布了新的文献求助10
刚刚
zhouwenbiao完成签到,获得积分20
1秒前
3秒前
wangjie发布了新的文献求助10
4秒前
雷含灵发布了新的文献求助10
4秒前
爆米花应助doctor2023采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
wy完成签到,获得积分10
6秒前
钱来完成签到,获得积分10
6秒前
善学以致用应助机灵凌雪采纳,获得10
7秒前
sqc发布了新的文献求助10
8秒前
8秒前
坦率的尔丝完成签到,获得积分10
9秒前
完美世界发布了新的文献求助10
10秒前
xcxcxcily完成签到,获得积分10
11秒前
搜集达人应助奋斗映寒采纳,获得10
11秒前
皓月当空完成签到,获得积分10
12秒前
小二郎应助Limerence采纳,获得10
13秒前
汉堡包应助tguczf采纳,获得10
13秒前
ZhangShuangwei完成签到,获得积分10
14秒前
16秒前
机长完成签到 ,获得积分10
17秒前
焦明准完成签到,获得积分10
17秒前
李李05完成签到,获得积分10
18秒前
wangjie完成签到,获得积分10
18秒前
652183758完成签到 ,获得积分10
18秒前
酷炫甜瓜完成签到,获得积分10
19秒前
19秒前
奋斗映寒发布了新的文献求助10
20秒前
小妖怪完成签到 ,获得积分10
21秒前
巴豆醇完成签到 ,获得积分10
21秒前
雷含灵完成签到,获得积分10
22秒前
李程阳完成签到 ,获得积分10
23秒前
研友_VZG7GZ应助甜美的煜祺采纳,获得10
24秒前
卡乐李发布了新的文献求助10
24秒前
多多发布了新的文献求助100
24秒前
奋斗映寒完成签到,获得积分10
25秒前
GeniusJoey完成签到 ,获得积分10
25秒前
25秒前
乐乐应助十六采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867