Incorporating multi-stage spatial visual cues and active localization offset for pancreas segmentation

计算机科学 分割 人工智能 偏移量(计算机科学) 像素 计算机视觉 卷积神经网络 新颖性 模式识别(心理学) 神学 哲学 程序设计语言
作者
Jianguo Ju,Jiaming Li,Zhengqi Chang,Ying Liu,Ziyu Guan,Ping Xu,Fei Xie,Hexu Wang
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:170: 85-92 被引量:3
标识
DOI:10.1016/j.patrec.2023.05.004
摘要

Accurately segmenting pancreas or pancreatic tumor from limited computed tomography (CT) scans plays an essential role in making a precise diagnosis and planning the surgical procedure for clinicians. Although deep convolutional neural networks (DCNNs) have greatly advanced in automatic organ segmentation, there are still many challenges in solving the pancreas segmentation problem with small region and complex background. Many researchers have developed a coarse-to-fine scheme, which employ prediction from the coarse stage as a smaller input region for the fine stage. Despite this scheme effectiveness, most existing approaches handle two stages individually, and fail to identify the reliability of coarse stage predictions. In this work, we present a novel coarse-to-fine framework based on spatial contextual cues and active localization offset. The novelty lies in carefully designed two modules: Spacial Visual Cues Fusion (SVCF) and Active Localization OffseT (ALOT). The SVCF combines the correlations between all pixels in an image to optimize the rough and uncertain pixel prediction at the coarse stage, while ALOT dynamically adjusts the localization as the coarse stage iteration. These two modules work together to optimize the coarse stage results and provide high-quality input for the fine stage, thereby achieving inspiring target segmentation. Empirical results on NIH pancreas segmentation and MSD pancreatic tumor segmentation dataset show that our framework yields state-of-the-art results. The code will make available at https://github.com/PinkGhost0812/SANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宵宫发布了新的文献求助10
1秒前
1秒前
小蘑菇应助nowxious采纳,获得10
2秒前
侏罗纪世界完成签到,获得积分10
3秒前
TEMPO发布了新的文献求助10
4秒前
帅气雪糕发布了新的文献求助10
5秒前
xxy完成签到,获得积分10
6秒前
水蜜桃幽灵完成签到,获得积分10
7秒前
liuxian完成签到,获得积分10
7秒前
终梦应助pangpang采纳,获得10
8秒前
8秒前
8秒前
9秒前
11秒前
yzy发布了新的文献求助20
12秒前
发发发发布了新的文献求助10
12秒前
zzz发布了新的文献求助10
13秒前
TEMPO完成签到,获得积分10
13秒前
13秒前
14秒前
围炉煮茶发布了新的文献求助10
14秒前
Akim应助小六采纳,获得10
15秒前
Tae_Hanazono发布了新的文献求助30
15秒前
Ava应助端庄栾采纳,获得10
15秒前
粒子一号完成签到,获得积分10
15秒前
shirly发布了新的文献求助10
17秒前
18秒前
shin关注了科研通微信公众号
18秒前
18秒前
酷酷夜阑发布了新的文献求助20
18秒前
Lyyyw发布了新的文献求助30
19秒前
乐乐应助AI采纳,获得10
19秒前
20秒前
大模型应助行7采纳,获得10
20秒前
刺槐完成签到,获得积分10
21秒前
西出钰门发布了新的文献求助10
21秒前
文汉天女完成签到,获得积分10
21秒前
邓晓霞完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817454
求助须知:如何正确求助?哪些是违规求助? 3360792
关于积分的说明 10409392
捐赠科研通 3078887
什么是DOI,文献DOI怎么找? 1690844
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060