Exploring the limits of metasurface polarization multiplexing capability based on deep learning

多路复用 极化(电化学) 全息术 计算机科学 光学 自编码 物理 深度学习 人工智能 电信 化学 物理化学
作者
Yang Yang,Xiaohu Zhang,Kaifeng Liu,Haimo Zhang,Lintong Shi,Mengyao He,Yongcai Guo
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (10): 17065-17065 被引量:1
标识
DOI:10.1364/oe.490002
摘要

Metasurfaces provide a new approach for planar optics and thus have realized multifunctional meta-devices with different multiplexing strategies, among which polarization multiplexing has received much attention due to its convenience. At present, a variety of design methods of polarization multiplexed metasurfaces have been developed based on different meta-atoms. However, as the number of polarization states increases, the response space of meta-atoms becomes more and more complex, and it is difficult for these methods to explore the limit of polarization multiplexing. Deep learning is one of the important routes to solve this problem because it can realize the effective exploration of huge data space. In this work, a design scheme for polarization multiplexed metasurfaces based on deep learning is proposed. The scheme uses a conditional variational autoencoder as an inverse network to generate structural designs and combines a forward network that can predict meta-atoms' responses to improve the accuracy of designs. The cross-shaped structure is used to establish a complicated response space containing different polarization state combinations of incident and outgoing light. The multiplexing effects of the combinations with different numbers of polarization states are tested by utilizing the proposed scheme to design nanoprinting and holographic images. The polarization multiplexing capability limit of four channels (a nanoprinting image and three holographic images) is determined. The proposed scheme lays the foundation for exploring the limits of metasurface polarization multiplexing capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mxdckd发布了新的文献求助10
1秒前
Huareyou发布了新的文献求助10
3秒前
英俊的铭应助牛哥采纳,获得10
3秒前
4秒前
6秒前
澳大利亚完成签到,获得积分10
7秒前
虚心的爆米花完成签到,获得积分10
7秒前
7秒前
淡淡从安发布了新的文献求助10
10秒前
Gjq发布了新的文献求助10
10秒前
爱听歌的钢铁侠完成签到,获得积分10
10秒前
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
Ava应助小小莫采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
ff完成签到,获得积分10
14秒前
ZhouYW应助科研通管家采纳,获得10
14秒前
14秒前
Ava应助震震采纳,获得10
14秒前
14秒前
ZhouYW应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得30
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
周宇飞发布了新的文献求助10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
Owen应助樊璐采纳,获得10
16秒前
啾v咪完成签到,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150