Automated quantification of measurable residual disease in chronic lymphocytic leukemia using an artificial intelligence‐assisted workflow

慢性淋巴细胞白血病 工作流程 微小残留病 免疫分型 人工智能 细胞仪 医学 计算机科学 白血病 内科学 流式细胞术 免疫学 数据库
作者
Alexandre Bazinet,Alan Wang,Xinmei Li,Fuli Jia,Huan Mo,Wei Wang,Sa A. Wang
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
卷期号:106 (4): 264-271 被引量:6
标识
DOI:10.1002/cyto.b.22116
摘要

Abstract Detection of measurable residual disease (MRD) in chronic lymphocytic leukemia (CLL) is an important prognostic marker. The most common CLL MRD method in current use is multiparameter flow cytometry, but availability is limited by the need for expert manual analysis. Automated analysis has the potential to expand access to CLL MRD testing. We evaluated the performance of an artificial intelligence (AI)‐assisted multiparameter flow cytometry (MFC) workflow for CLL MRD. We randomly selected 113 CLL MRD FCS files and divided them into training and validation sets. The training set ( n = 41) was gated by expert manual analysis and used to train the AI model. We then compared the validation set ( n = 72) MRD results obtained by the AI‐assisted analysis versus those by expert manual analysis using the Pearson correlation coefficient and Bland–Altman plot method. In the validation set, the AI‐assisted analysis correctly categorized cases as MRD‐negative versus MRD‐positive in 96% of cases. When comparing the AI‐assisted analysis versus the expert manual analysis, the Pearson r was 0.8650, mean bias was 0.2237 log 10 units, and the 95% limit of agreement (LOA) was ±1.0282 log 10 units. The AI‐assisted analysis performed sub‐optimally in atypical immunophenotype CLL and in cases lacking residual normal B cells. When excluding these outlier cases, the mean bias improved to 0.0680 log 10 units and the 95% LOA to ±0.2926 log 10 units. An automated AI‐assisted workflow allows for the quantification of MRD in CLL with typical immunophenotype. Further work is required to improve performance in atypical immunophenotype CLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡冬瓜完成签到,获得积分10
刚刚
CNYDNZB完成签到 ,获得积分10
1秒前
皮卡丘发布了新的文献求助10
1秒前
星期八约会猪猪侠完成签到,获得积分10
1秒前
AnitaAdal完成签到,获得积分20
2秒前
小徐完成签到,获得积分10
2秒前
wobisheng完成签到,获得积分10
5秒前
jenningseastera应助杨一采纳,获得10
5秒前
冰魂应助协和_子鱼采纳,获得10
6秒前
jialin完成签到 ,获得积分10
6秒前
Ying完成签到,获得积分10
7秒前
duonicola发布了新的文献求助10
7秒前
芷兰丁香完成签到,获得积分10
7秒前
发呆的小号完成签到 ,获得积分10
8秒前
爱听歌的峻熙完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
dhu_cc完成签到,获得积分10
13秒前
活力安南完成签到,获得积分10
13秒前
CYYDNDB完成签到 ,获得积分10
14秒前
14秒前
谨慎达完成签到 ,获得积分10
15秒前
15秒前
Jaden完成签到,获得积分10
15秒前
细胞呵呵发布了新的文献求助10
16秒前
脑洞疼应助小学生库里采纳,获得10
17秒前
duonicola完成签到,获得积分10
17秒前
iNk应助lastxuan采纳,获得10
18秒前
cdercder应助ZCcxsx采纳,获得10
19秒前
sunbigfly发布了新的文献求助50
20秒前
sam完成签到,获得积分10
20秒前
21秒前
luis完成签到,获得积分10
21秒前
明鹄完成签到 ,获得积分10
24秒前
24秒前
老实的小小完成签到,获得积分20
25秒前
橙子完成签到,获得积分10
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823177
求助须知:如何正确求助?哪些是违规求助? 3365716
关于积分的说明 10436831
捐赠科研通 3084754
什么是DOI,文献DOI怎么找? 1696974
邀请新用户注册赠送积分活动 816141
科研通“疑难数据库(出版商)”最低求助积分说明 769426