Effect of a deep learning–based automatic upper GI endoscopic reporting system: a randomized crossover study (with video)

医学 内窥镜检查 交叉研究 放射科 完备性(序理论) 病变 异常 人工智能 外科 病理 计算机科学 安慰剂 数学 精神科 数学分析 替代医学
作者
Lihui Zhang,Zihua Lu,Liwen Yao,Zehua Dong,Wei Zhou,Chunping He,Renquan Luo,Mengjiao Zhang,Jing Wang,Yanxia Li,Yunchao Deng,Chenxia Zhang,Xun Li,Renduo Shang,Ming Xu,Junxiao Wang,Yu Zhao,Lianlian Wu,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:98 (2): 181-190.e10 被引量:12
标识
DOI:10.1016/j.gie.2023.02.025
摘要

EGD is essential for GI disorders, and reports are pivotal to facilitating postprocedure diagnosis and treatment. Manual report generation lacks sufficient quality and is labor intensive. We reported and validated an artificial intelligence-based endoscopy automatic reporting system (AI-EARS).The AI-EARS was designed for automatic report generation, including real-time image capturing, diagnosis, and textual description. It was developed using multicenter datasets from 8 hospitals in China, including 252,111 images for training, 62,706 images, and 950 videos for testing. Twelve endoscopists and 44 endoscopy procedures were consecutively enrolled to evaluate the effect of the AI-EARS in a multireader, multicase, crossover study. The precision and completeness of the reports were compared between endoscopists using the AI-EARS and conventional reporting systems.In video validation, the AI-EARS achieved completeness of 98.59% and 99.69% for esophageal and gastric abnormality records, respectively, accuracies of 87.99% and 88.85% for esophageal and gastric lesion location records, and 73.14% and 85.24% for diagnosis. Compared with the conventional reporting systems, the AI-EARS achieved greater completeness (79.03% vs 51.86%, P < .001) and accuracy (64.47% vs 42.81%, P < .001) of the textual description and completeness of the photo-documents of landmarks (92.23% vs 73.69%, P < .001). The mean reporting time for an individual lesion was significantly reduced (80.13 ± 16.12 seconds vs 46.47 ± 11.68 seconds, P < .001) after the AI-EARS assistance.The AI-EARS showed its efficacy in improving the accuracy and completeness of EGD reports. It might facilitate the generation of complete endoscopy reports and postendoscopy patient management. (Clinical trial registration number: NCT05479253.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mao应助文件撤销了驳回
2秒前
hongxing liu完成签到,获得积分10
2秒前
2秒前
烟绯完成签到 ,获得积分10
4秒前
back you up应助KEHUGE采纳,获得30
5秒前
可爱的函函应助温暖静柏采纳,获得10
5秒前
小螃蟹发布了新的文献求助10
7秒前
orixero应助剪影改采纳,获得10
7秒前
孙意冉发布了新的文献求助10
7秒前
9秒前
YifanWang应助不敢装睡采纳,获得30
10秒前
时光发布了新的文献求助10
12秒前
12秒前
炙热的雪糕完成签到,获得积分10
12秒前
NexusExplorer应助务实的听筠采纳,获得10
14秒前
Zll发布了新的文献求助10
15秒前
15秒前
ding应助灵巧的煎饼采纳,获得10
17秒前
刘天宇完成签到 ,获得积分10
18秒前
RYS完成签到,获得积分10
18秒前
19秒前
第二菜发布了新的文献求助10
20秒前
20秒前
剪影改发布了新的文献求助10
21秒前
寻梦发布了新的文献求助10
23秒前
23秒前
abbytang完成签到,获得积分10
25秒前
阿琦完成签到 ,获得积分10
27秒前
27秒前
哦东东完成签到,获得积分10
27秒前
30秒前
干红完成签到,获得积分10
30秒前
CCO发布了新的文献求助10
30秒前
大个应助李新阳采纳,获得10
30秒前
伪装纸鹤完成签到 ,获得积分10
31秒前
cdercder应助过时的浩轩采纳,获得10
32秒前
大卫戴完成签到 ,获得积分10
32秒前
科研通AI5应助时光采纳,获得10
32秒前
yyy发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783723
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239212
捐赠科研通 3044381
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759172