亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of a deep learning–based automatic upper GI endoscopic reporting system: a randomized crossover study (with video)

医学 内窥镜检查 交叉研究 放射科 完备性(序理论) 病变 异常 人工智能 外科 病理 计算机科学 替代医学 安慰剂 数学分析 数学 精神科
作者
Lihui Zhang,Zihua Lu,Liwen Yao,Zehua Dong,Wei Zhou,Chunping He,Renquan Luo,Mengjiao Zhang,Jing Wang,Yanxia Li,Yunchao Deng,Chenxia Zhang,Xun Li,Renduo Shang,Ming Xu,Junxiao Wang,Yu Zhao,Lianlian Wu,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:98 (2): 181-190.e10 被引量:16
标识
DOI:10.1016/j.gie.2023.02.025
摘要

EGD is essential for GI disorders, and reports are pivotal to facilitating postprocedure diagnosis and treatment. Manual report generation lacks sufficient quality and is labor intensive. We reported and validated an artificial intelligence-based endoscopy automatic reporting system (AI-EARS).The AI-EARS was designed for automatic report generation, including real-time image capturing, diagnosis, and textual description. It was developed using multicenter datasets from 8 hospitals in China, including 252,111 images for training, 62,706 images, and 950 videos for testing. Twelve endoscopists and 44 endoscopy procedures were consecutively enrolled to evaluate the effect of the AI-EARS in a multireader, multicase, crossover study. The precision and completeness of the reports were compared between endoscopists using the AI-EARS and conventional reporting systems.In video validation, the AI-EARS achieved completeness of 98.59% and 99.69% for esophageal and gastric abnormality records, respectively, accuracies of 87.99% and 88.85% for esophageal and gastric lesion location records, and 73.14% and 85.24% for diagnosis. Compared with the conventional reporting systems, the AI-EARS achieved greater completeness (79.03% vs 51.86%, P < .001) and accuracy (64.47% vs 42.81%, P < .001) of the textual description and completeness of the photo-documents of landmarks (92.23% vs 73.69%, P < .001). The mean reporting time for an individual lesion was significantly reduced (80.13 ± 16.12 seconds vs 46.47 ± 11.68 seconds, P < .001) after the AI-EARS assistance.The AI-EARS showed its efficacy in improving the accuracy and completeness of EGD reports. It might facilitate the generation of complete endoscopy reports and postendoscopy patient management. (Clinical trial registration number: NCT05479253.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
例外发布了新的文献求助10
11秒前
顾矜应助例外采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
莫名是个小疯子给落寞臻的求助进行了留言
27秒前
46秒前
唐泽雪穗发布了新的文献求助80
54秒前
1分钟前
莫名是个小疯子给xpeng的求助进行了留言
1分钟前
例外发布了新的文献求助10
1分钟前
科研通AI5应助例外采纳,获得10
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助40
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
研友_892kOL完成签到,获得积分0
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助小熊采纳,获得20
3分钟前
4分钟前
小熊完成签到,获得积分10
4分钟前
小熊发布了新的文献求助20
4分钟前
mulidexin2021完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研cc完成签到,获得积分20
4分钟前
4分钟前
孤独剑完成签到 ,获得积分10
4分钟前
4分钟前
Fairy完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Gydl发布了新的文献求助30
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
6分钟前
Aimee完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078273
求助须知:如何正确求助?哪些是违规求助? 4297068
关于积分的说明 13387809
捐赠科研通 4119729
什么是DOI,文献DOI怎么找? 2256199
邀请新用户注册赠送积分活动 1260513
关于科研通互助平台的介绍 1194073