Developing a computable phenotype for glioblastoma

图表 诊断代码 计算机科学 电子健康档案 病历 健康档案 胶质母细胞瘤 F1得分 人口 非结构化数据 医学 数据挖掘 自然语言处理 人工智能 医疗保健 内科学 数学 统计 大数据 环境卫生 癌症研究 经济 经济增长
作者
Sandra C. Yan,Kaitlyn Melnick,Xing He,Tianchen Lyu,Rachel Moor,Megan Still,Duane A. Mitchell,Elizabeth Shenkman,Han Wang,Yi Guo,Jiang Bian,Ashley Ghiaseddin
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1163-1170
标识
DOI:10.1093/neuonc/noad249
摘要

Abstract Background Glioblastoma is the most common malignant brain tumor, and thus it is important to be able to identify patients with this diagnosis for population studies. However, this can be challenging as diagnostic codes are nonspecific. The aim of this study was to create a computable phenotype (CP) for glioblastoma multiforme (GBM) from structured and unstructured data to identify patients with this condition in a large electronic health record (EHR). Methods We used the University of Florida (UF) Health Integrated Data Repository, a centralized clinical data warehouse that stores clinical and research data from various sources within the UF Health system, including the EHR system. We performed multiple iterations to refine the GBM-relevant diagnosis codes, procedure codes, medication codes, and keywords through manual chart review of patient data. We then evaluated the performances of various possible proposed CPs constructed from the relevant codes and keywords. Results We underwent six rounds of manual chart reviews to refine the CP elements. The final CP algorithm for identifying GBM patients was selected based on the best F1-score. Overall, the CP rule “if the patient had at least 1 relevant diagnosis code and at least 1 relevant keyword” demonstrated the highest F1-score using both structured and unstructured data. Thus, it was selected as the best-performing CP rule. Conclusions We developed and validated a CP algorithm for identifying patients with GBM using both structured and unstructured EHR data from a large tertiary care center. The final algorithm achieved an F1-score of 0.817, indicating a high performance, which minimizes possible biases from misclassification errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qly发布了新的文献求助10
刚刚
万能图书馆应助十八采纳,获得10
刚刚
刚刚
1秒前
兴奋的乐巧完成签到,获得积分10
1秒前
2秒前
小石头完成签到,获得积分10
2秒前
科研通AI5应助复杂的梦曼采纳,获得10
2秒前
阿飞发布了新的文献求助10
2秒前
隐形的翅膀完成签到 ,获得积分10
3秒前
西瓜汁发布了新的文献求助10
3秒前
3秒前
zzzz发布了新的文献求助10
4秒前
jimi完成签到 ,获得积分10
4秒前
Jing发布了新的文献求助10
5秒前
小石头发布了新的文献求助10
5秒前
5秒前
6秒前
思源应助诗轩采纳,获得10
7秒前
7秒前
7秒前
8秒前
香蕉觅云应助一一采纳,获得10
9秒前
刘凯鑫完成签到,获得积分20
10秒前
动漫大师发布了新的文献求助10
10秒前
10秒前
11秒前
情怀应助qly采纳,获得10
12秒前
12秒前
帅气老虎完成签到,获得积分10
12秒前
Star应助HaoHao04采纳,获得10
13秒前
13秒前
13秒前
HaroldNguyen完成签到,获得积分10
14秒前
星辰大海应助徐徐采纳,获得10
14秒前
Ddddd发布了新的文献求助10
14秒前
14秒前
SWEETYXY应助ceci采纳,获得10
14秒前
15秒前
ymc的dad完成签到,获得积分10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787