Identification of high-risk population of pneumoconiosis using deep learning segmentation of lung 3D images and radiomics texture analysis

纹理(宇宙学) 人工智能 分割 鉴定(生物学) 人口 医学 无线电技术 计算机科学 模式识别(心理学) 放射科 图像(数学) 内科学 生物 植物 环境卫生
作者
Yafeng Liu,Jing Wu,Jiawei Zhou,Jianqiang Guo,Chao Liang,Yingru Xing,Zhongyu Wang,Lijuan Chen,Yan Ding,Dingfei Ren,Ying Bai,Dong Hu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 108006-108006 被引量:7
标识
DOI:10.1016/j.cmpb.2024.108006
摘要

The aim of this study is to develop an early-warning model for identifying high-risk populations of pneumoconiosis by combining lung 3D images and radiomics lung texture features.A retrospective study was conducted, including 600 dust-exposed workers and 300 confirmed pneumoconiosis patients. Chest computed tomography (CT) images were divided into a training set and a test set in a 2:1 ratio. Whole-lung segmentation was performed using deep learning models for feature extraction of radiomics. Two feature selection algorithms and five classification models were used. The optimal model was selected using a 10-fold cross-validation strategy, and the calibration curve and decision curve were evaluated. To verify the applicability of the model, the diagnostic efficiency and accuracy between the model and human interpretation were compared. Additionally, the risk probabilities for different risk groups defined by the model were compared at different time intervals.Four radiomics features were ultimately used to construct the predictive model. The logistic regression model was the most stable in both the training set and testing set, with an area under curve (AUC) of 0.964 (95 % confidence interval [CI], 0.950-0.976) and 0.947 (95 %CI, 0.925-0.964). In the training and testing sets, the Brier scores were 0.092 and 0.14, respectively, with threshold probability ranges of 2 %-99 % and 2 %-85 %. These results indicate that the model exhibits good calibration and clinical benefit. The comparison between the model and human interpretation showed that the model was not inferior in terms of diagnostic efficiency and accuracy. Additionally, the high-risk population identified by the model was diagnosed as pneumoconiosis two years later.This study provides a meticulous and quantifiable method for detecting and assessing the risk of pneumoconiosis, building upon accurate diagnosis. Employing risk scoring and probability estimation, not only enhances the efficiency of diagnostic physicians but also provides a valuable reference for controlling the occurrence of pneumoconiosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆发布了新的文献求助30
刚刚
djf完成签到,获得积分10
1秒前
1秒前
FashionBoy应助迪丽盐巴采纳,获得10
2秒前
chen202303应助明芬采纳,获得10
2秒前
飞翔的霸天哥应助大熊采纳,获得30
2秒前
3秒前
Jason完成签到 ,获得积分10
3秒前
852应助瑜軒采纳,获得10
4秒前
希望天下0贩的0应助xxm采纳,获得10
4秒前
5秒前
苏澄完成签到,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
852应助成就灭龙采纳,获得10
7秒前
Just97完成签到,获得积分10
7秒前
张正发布了新的文献求助10
7秒前
一元发布了新的文献求助30
8秒前
吴新完成签到 ,获得积分10
9秒前
ALOHA发布了新的文献求助10
9秒前
10秒前
10秒前
演员完成签到,获得积分10
10秒前
Hello应助橙汁采纳,获得10
11秒前
11秒前
12秒前
13秒前
豆豆完成签到,获得积分10
13秒前
迪丽盐巴发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
幻__发布了新的文献求助10
17秒前
yee完成签到 ,获得积分10
17秒前
18秒前
皇帝的床帘完成签到,获得积分10
19秒前
浮游应助Oz采纳,获得10
19秒前
迪丽盐巴完成签到,获得积分10
19秒前
21秒前
寻悦发布了新的文献求助10
22秒前
Maestro_S应助明芬采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306813
求助须知:如何正确求助?哪些是违规求助? 4452593
关于积分的说明 13854857
捐赠科研通 4340137
什么是DOI,文献DOI怎么找? 2382958
邀请新用户注册赠送积分活动 1377840
关于科研通互助平台的介绍 1345621