Unsupervised Low-Light Image Enhancement Algorithm Based on Prior Information

计算机科学 人工智能 图像增强 图像(数学) 计算机视觉 模式识别(心理学) 算法
作者
Cong Liu,Yigang Wang
出处
期刊:Lecture notes in electrical engineering 卷期号:: 55-61
标识
DOI:10.1007/978-981-99-9955-2_8
摘要

Images captured in dimly illuminated surroundings often suffer from low contrast and severe loss of details, which directly affect the accuracy of subsequent image classification, recognition, and detection tasks. This paper addresses the challenges of low-light image enhancement, which relies on real data training and the insufficient availability of effective information in low-light images. An unsupervised low-light image enhancement algorithm, based on prior information, is proposed by us. By performing histogram equalization on the preprocessed images before network training, hidden information in the images is obtained. The optimization of initialization information is achieved by extracting the reflectance and illumination maps of the low-light images, which preserves the relative structural integrity of the images and improves the brightness restoration effect. The experimental outcomes validate the efficacy of the proposed algorithm in restoring brightness and reproducing natural colors in images. In comparison to other algorithms, it demonstrates superior performance on the LOL dataset in terms of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and natural image quality evaluation metrics (NIQE). Specifically, it achieves improvements of 1.433 dB, 0.040, and 1.285, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助河北采纳,获得10
2秒前
研友_alan完成签到,获得积分10
2秒前
blacksmith0发布了新的文献求助10
3秒前
3秒前
andy发布了新的文献求助10
5秒前
23582完成签到,获得积分10
6秒前
www完成签到,获得积分20
6秒前
lxlcx应助自行设置采纳,获得10
7秒前
7秒前
8秒前
肆月完成签到 ,获得积分10
8秒前
Akim应助祖之微笑采纳,获得10
9秒前
11秒前
11秒前
12秒前
英姑应助怡然嚣采纳,获得10
12秒前
michaelxia发布了新的文献求助10
13秒前
充电宝应助andy采纳,获得10
13秒前
14秒前
饱满芷卉发布了新的文献求助10
14秒前
刘若鑫完成签到 ,获得积分10
15秒前
HOXXXiii发布了新的文献求助10
15秒前
乌梅丸完成签到 ,获得积分10
15秒前
水云发布了新的文献求助10
16秒前
共享精神应助活泼的觅云采纳,获得10
16秒前
打打应助王老吉采纳,获得10
17秒前
zoey发布了新的文献求助10
17秒前
汉堡包应助meiko采纳,获得10
18秒前
鸡鱼蚝发布了新的文献求助10
19秒前
万能图书馆应助博修采纳,获得10
19秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802191
求助须知:如何正确求助?哪些是违规求助? 3347960
关于积分的说明 10335656
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807961
科研通“疑难数据库(出版商)”最低求助积分说明 763997