An effective framework for predicting drug–drug interactions based on molecular substructures and knowledge graph neural network

计算机科学 组分(热力学) 药品 互补性(分子生物学) 机器学习 人工智能 图形 人工神经网络 化学信息学 理论计算机科学 生物信息学 药理学 医学 物理 生物 遗传学 热力学
作者
Siqi Chen,Ivan Semenov,Fengyun Zhang,Yang Yang,Jie Geng,Xuequan Feng,Qinghua Meng,Kaiyou Lei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107900-107900 被引量:35
标识
DOI:10.1016/j.compbiomed.2023.107900
摘要

Drug–drug interactions (DDIs) play a central role in drug research, as the simultaneous administration of multiple drugs can have harmful or beneficial effects. Harmful interactions lead to adverse reactions, some of which can be life-threatening, while beneficial interactions can promote efficacy. Therefore, it is crucial for physicians, patients, and the research community to identify potential DDIs. Although many AI-based techniques have been proposed for predicting DDIs, most existing computational models primarily focus on integrating multiple data sources or combining popular embedding methods. Researchers often overlook the valuable information within the molecular structure of drugs or only consider the structural information of drugs, neglecting the relationship or topological information between drugs and other biological objects. In this study, we propose MSKG-DDI – a two-component framework that incorporates the Drug Chemical Structure Graph-based component and the Drug Knowledge Graph-based component to capture multimodal characteristics of drugs. Subsequently, a multimodal fusion neural layer is utilized to explore the complementarity between multimodal representations of drugs. Extensive experiments were conducted using two real-world datasets, and the results demonstrate that MSKG-DDI outperforms other state-of-the-art models in binary-class, multi-class, and multi-label prediction tasks under both transductive and inductive settings. Furthermore, the ablation analysis further confirms the practical usefulness of MSKG-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mahehivebv111完成签到,获得积分10
刚刚
Hibiscus95完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
刘钊扬完成签到,获得积分10
3秒前
传奇3应助张超采纳,获得10
3秒前
MZT完成签到,获得积分10
3秒前
嘟嘟包发布了新的文献求助30
4秒前
打工人发布了新的文献求助10
5秒前
lsy完成签到,获得积分10
5秒前
5秒前
李爱国应助依然小爽采纳,获得10
5秒前
6秒前
G1234发布了新的文献求助10
7秒前
小苏发布了新的文献求助10
9秒前
10秒前
Ava应助称心冰枫采纳,获得10
10秒前
淼淼完成签到 ,获得积分10
10秒前
11秒前
洁净的代容完成签到,获得积分10
12秒前
白啦啦完成签到 ,获得积分10
12秒前
12秒前
13秒前
清风完成签到,获得积分10
13秒前
Abrote完成签到,获得积分10
14秒前
Elarrina发布了新的文献求助20
15秒前
16秒前
17秒前
RogerCqz完成签到,获得积分10
17秒前
fenmiao发布了新的文献求助10
17秒前
嘟嘟包完成签到 ,获得积分10
18秒前
20秒前
王好让发布了新的文献求助10
20秒前
20秒前
21秒前
植物代谢完成签到,获得积分10
22秒前
22秒前
Jasper应助bianco2007采纳,获得10
22秒前
落后傲柏发布了新的文献求助10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107910
求助须知:如何正确求助?哪些是违规求助? 3645867
关于积分的说明 11548920
捐赠科研通 3352109
什么是DOI,文献DOI怎么找? 1841832
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825429