已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An effective framework for predicting drug–drug interactions based on molecular substructures and knowledge graph neural network

计算机科学 组分(热力学) 药品 互补性(分子生物学) 机器学习 人工智能 图形 人工神经网络 化学信息学 理论计算机科学 生物信息学 药理学 医学 热力学 生物 物理 遗传学
作者
Siqi Chen,Ivan Semenov,Fengyun Zhang,Yang Yang,Jie Geng,Xuequan Feng,Qinghua Meng,Kaiyou Lei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107900-107900 被引量:28
标识
DOI:10.1016/j.compbiomed.2023.107900
摘要

Drug–drug interactions (DDIs) play a central role in drug research, as the simultaneous administration of multiple drugs can have harmful or beneficial effects. Harmful interactions lead to adverse reactions, some of which can be life-threatening, while beneficial interactions can promote efficacy. Therefore, it is crucial for physicians, patients, and the research community to identify potential DDIs. Although many AI-based techniques have been proposed for predicting DDIs, most existing computational models primarily focus on integrating multiple data sources or combining popular embedding methods. Researchers often overlook the valuable information within the molecular structure of drugs or only consider the structural information of drugs, neglecting the relationship or topological information between drugs and other biological objects. In this study, we propose MSKG-DDI – a two-component framework that incorporates the Drug Chemical Structure Graph-based component and the Drug Knowledge Graph-based component to capture multimodal characteristics of drugs. Subsequently, a multimodal fusion neural layer is utilized to explore the complementarity between multimodal representations of drugs. Extensive experiments were conducted using two real-world datasets, and the results demonstrate that MSKG-DDI outperforms other state-of-the-art models in binary-class, multi-class, and multi-label prediction tasks under both transductive and inductive settings. Furthermore, the ablation analysis further confirms the practical usefulness of MSKG-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助干净山柳采纳,获得10
刚刚
郑偏偏发布了新的文献求助10
1秒前
ComeOn发布了新的文献求助10
4秒前
科研通AI5应助玻尿酸采纳,获得10
4秒前
李孟佯完成签到 ,获得积分10
5秒前
8秒前
可爱的函函应助ComeOn采纳,获得10
9秒前
####完成签到 ,获得积分10
9秒前
10秒前
Lucas应助几秋采纳,获得10
12秒前
xiaoxiong发布了新的文献求助10
12秒前
lulu完成签到 ,获得积分10
16秒前
16秒前
zc关闭了zc文献求助
16秒前
干净山柳发布了新的文献求助10
16秒前
yangyl58完成签到,获得积分10
17秒前
岂曰无衣完成签到 ,获得积分10
17秒前
Rose_Yang完成签到 ,获得积分10
18秒前
18秒前
18秒前
Murphy完成签到,获得积分10
18秒前
斯文败类应助phobeeee采纳,获得50
20秒前
tianyue发布了新的文献求助10
21秒前
赛赛发布了新的文献求助10
21秒前
21秒前
科研通AI5应助xiaoxiong采纳,获得10
22秒前
LMM完成签到 ,获得积分10
22秒前
羊羊完成签到 ,获得积分10
24秒前
25秒前
fate0325发布了新的文献求助10
26秒前
tianyue完成签到,获得积分10
26秒前
锦鲤完成签到 ,获得积分10
26秒前
28秒前
29秒前
无花果应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
shy发布了新的文献求助10
31秒前
闪999完成签到,获得积分10
31秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787983
求助须知:如何正确求助?哪些是违规求助? 3333553
关于积分的说明 10262434
捐赠科研通 3049355
什么是DOI,文献DOI怎么找? 1673516
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760475