已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts

代谢组学 代谢物 代谢组 生物 计算生物学 生物信息学 生物化学
作者
D. Liu,G. A. Nagana Gowda,Zhongli Jiang,Kangni Alemdjrodo,Min Zhang,Dabao Zhang,Daniel Raftery
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (8)
标识
DOI:10.1073/pnas.2307430121
摘要

Blood metabolite levels are affected by numerous factors, including preanalytical factors such as collection methods and geographical sites. These perturbations have caused deleterious consequences for many metabolomics studies and represent a major challenge in the metabolomics field. It is important to understand these factors and develop models to reduce their perturbations. However, to date, the lack of suitable mathematical models for blood metabolite levels under homeostasis has hindered progress. In this study, we develop quantitative models of blood metabolite levels in healthy adults based on multisite sample cohorts that mimic the current challenge. Five cohorts of samples obtained across four geographically distinct sites were investigated, focusing on approximately 50 metabolites that were quantified using 1 H NMR spectroscopy. More than one-third of the variation in these metabolite profiles is due to cross-cohort variation. A dramatic reduction in the variation of metabolite levels (90%), especially their site-to-site variation (95%), was achieved by modeling each metabolite using demographic and clinical factors and especially other metabolites, as observed in the top principal components. The results also reveal that several metabolites contribute disproportionately to such variation, which could be explained by their association with biological pathways including biosynthesis and degradation. The study demonstrates an intriguing network effect of metabolites that can be utilized to better define homeostatic metabolite levels, which may have implications for improved health monitoring. As an example of the potential utility of the approach, we show that modeling gender-related metabolic differences retains the interesting variance while reducing unwanted (site-related) variance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小赵完成签到,获得积分10
1秒前
1秒前
2秒前
积极的夜蕾完成签到,获得积分10
2秒前
Lucas应助jiujiu采纳,获得10
12秒前
药剂机智小仓鼠完成签到 ,获得积分10
12秒前
天涯完成签到 ,获得积分10
14秒前
无辜的猎豹完成签到 ,获得积分10
15秒前
蓝鲸完成签到 ,获得积分10
16秒前
16秒前
负责的归尘完成签到,获得积分10
16秒前
SciGPT应助小城故事和冰雨采纳,获得10
17秒前
科研通AI2S应助妖孽宇采纳,获得10
18秒前
20秒前
善良的剑通应助包远锋采纳,获得10
22秒前
24秒前
负责的凝丹完成签到,获得积分10
25秒前
fafa完成签到 ,获得积分10
25秒前
licrazy发布了新的文献求助10
26秒前
爆炸boom完成签到 ,获得积分10
26秒前
27秒前
妖孽宇完成签到,获得积分10
28秒前
29秒前
29秒前
烟花应助licrazy采纳,获得10
31秒前
妖孽宇发布了新的文献求助10
32秒前
积极的香菇完成签到 ,获得积分10
32秒前
dgg发布了新的文献求助10
32秒前
芒果布丁发布了新的文献求助10
33秒前
33秒前
34秒前
Yy杨优秀发布了新的文献求助10
37秒前
wxx完成签到 ,获得积分10
39秒前
dormraider完成签到,获得积分10
40秒前
尊敬乐蕊发布了新的文献求助10
42秒前
搜集达人应助Yy杨优秀采纳,获得10
43秒前
无花果应助DCVPI采纳,获得10
44秒前
科研通AI5应助lhs采纳,获得10
44秒前
zsy发布了新的文献求助10
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391