已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling streamflow in non-gauged watersheds with sparse data considering physiographic, dynamic climate, and anthropogenic factors using explainable soft computing techniques

水流 环境科学 水文学(农业) 气候学 地质学 流域 地理 地图学 岩土工程
作者
Charuni I. Madhushani,K. G. S. Dananjaya,I.U. Ekanayake,D.P.P. Meddage,Komali Kantamaneni,Upaka Rathnayake
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130846-130846 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130846
摘要

Streamflow forecasting is essential for effective water resource planning and early warning systems. Streamflow and related parameters are often characterized by uncertainties and complex behaviors. Recent studies have turned to machine learning (ML) to predict streamflow. However, many of these methods have overlooked the interpretability and causality of their predictions, which undermine the confidence of end-users in the reliability of machine learning. Besides, non-gauged basins have been receiving more attention due to the inherent risks involved in streamflow prediction. This study aims to overcome these limitations by utilizing ML to model streamflow in a non-gauged basin using anthropogenic, static physiographic, and dynamic climate variables, while also providing interpretability through the use of Shapley Additive Explanations (SHAP). Four ML algorithms were employed in this study, including Histogram Gradient Boosting (HGB), Extreme Gradient Boosting (XGB), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) to forecast streamflow. XGB outperformed the other models with a correlation coefficient (R) of 0.91 for training and 0.884 for testing, along with mean absolute errors (MAE) of 0.02 for training and 0.023 for testing. Significantly, the use of SHAP provided insights into the inner workings of XGB predictions, revealing how these predictions are made. SHAP provides the feature importance, interactions among features, and dependencies. This explainable model (SHAP) is an invaluable addition to ML-based streamflow predictions and early warning systems, offering human-comprehensible interpretations. The findings of this study are specially imperative to manage flood risk factors in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alan完成签到,获得积分10
1秒前
1秒前
2秒前
阿东c完成签到,获得积分10
2秒前
科研通AI6应助甜甜若冰采纳,获得10
2秒前
2秒前
3秒前
鳗鱼绮关注了科研通微信公众号
3秒前
邹存志发布了新的文献求助10
3秒前
hongxuezhi发布了新的文献求助10
3秒前
4秒前
周8相见完成签到,获得积分10
4秒前
5秒前
殷楷霖发布了新的文献求助10
7秒前
8秒前
decimalpoint发布了新的文献求助10
8秒前
小马哥完成签到,获得积分10
8秒前
鹰击长空发布了新的文献求助10
9秒前
10秒前
Hello应助hongxuezhi采纳,获得10
10秒前
斯文败类应助顶级科学家采纳,获得10
12秒前
湘崽丫完成签到 ,获得积分10
13秒前
科研通AI6应助张利双采纳,获得10
13秒前
Moment发布了新的文献求助10
14秒前
15秒前
阿东c发布了新的文献求助10
15秒前
starlight完成签到,获得积分10
15秒前
JoeyJin完成签到,获得积分10
15秒前
16秒前
李晨旭完成签到,获得积分10
17秒前
皮卡秋完成签到,获得积分10
17秒前
lvzhechen发布了新的文献求助10
17秒前
18秒前
邹存志完成签到,获得积分20
19秒前
ni发布了新的文献求助10
19秒前
DrLiao完成签到 ,获得积分10
21秒前
Ava应助勤奋的缘郡采纳,获得10
21秒前
SciGPT应助孤独芷烟采纳,获得10
21秒前
我是老大应助鹰击长空采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469690
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336868
捐赠科研通 4499634
什么是DOI,文献DOI怎么找? 2465126
邀请新用户注册赠送积分活动 1453693
关于科研通互助平台的介绍 1428209