Online Handwritten Chinese Character Recognition Based on 1-D Convolution and Two-Streams Transformers

计算机科学 人工智能 变压器 模式识别(心理学) 预处理器 手写体识别 特征提取 计算机视觉 语音识别 工程类 电压 电气工程
作者
Y J Chen,Hao Zheng,Yanchun Li,Wanli Ouyang,Jiang Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5769-5781 被引量:5
标识
DOI:10.1109/tmm.2023.3339589
摘要

As one of the classic problems of pattern recognition, the online Handwritten Chinese Character Recognition (OLHCCR) has attracted the attention of many researchers. Yet, it remains challenging due to complex glyphs, numerous strokes, and huge categories. Existing methods utilize temporal features or spatial features to recognize handwritten characters, which results in recognition errors due to the character with non-standard stroke order. This paper proposes a new OLHCCR model based on 1-D Convolution and Two-Streams Transformers. The model has a 1-D Transformer and a Vision Transformer, and the 1-D Transformer contains a 1-D Convolution layer and Transformers, that is, the model has overall structure of Two-Streams Transformers with 1-D Convolution. So, the model is named as C-TST. It can fuse temporal and spatial features of Chinese character to achieve high recognition accuracy and fast recognition speed. Specifically, each online handwritten Chinese character is represented by a trajectory sequence. The original trajectory sequence is preprocessed to enhance the information density of each trajectory point and features difference among trajectory points. Then, the result after preprocessing is input into the 1-D convolution layer to obtain shallow temporal features, which are used also as the input of the Transformers to capture the temporal features. Simultaneously, character image is generated by processing the original trajectory sequence, and then fed into the Vision Transformer to capture the spatial features. By fusing the captured temporal and spatial features of online handwritten Chinese character, the proposed C-TST achieves a recognition accuracy of 97.90% on ICDAR-2013 and a state-of-the-art recognition accuracy of 97.38% on IAHCC-UCAS2016. The code will be available at https://github.com/cwnuiot/Two-Streams-Transformer

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HCLO完成签到,获得积分10
1秒前
Rachel完成签到,获得积分10
2秒前
ablajan完成签到 ,获得积分10
2秒前
3秒前
lmy关闭了lmy文献求助
3秒前
4秒前
4秒前
yy发布了新的文献求助10
4秒前
充电宝应助mcu采纳,获得10
5秒前
汤雪婷完成签到,获得积分10
6秒前
一落尘沙发布了新的文献求助10
6秒前
拂晓晓完成签到,获得积分10
7秒前
123完成签到,获得积分20
8秒前
8秒前
cxnkeyantong完成签到,获得积分10
9秒前
李健应助无私的犀牛采纳,获得10
10秒前
兜有米发布了新的文献求助10
10秒前
ttxxcdx完成签到 ,获得积分10
10秒前
12秒前
orixero应助爱学习采纳,获得10
12秒前
虚拟的保温杯完成签到,获得积分10
13秒前
认真夏山关注了科研通微信公众号
13秒前
傻傻的静竹完成签到,获得积分10
13秒前
14秒前
123完成签到,获得积分10
14秒前
隐形曼青应助Molly86采纳,获得10
15秒前
所所应助Penn采纳,获得10
16秒前
鲜艳的遥完成签到 ,获得积分20
17秒前
aaa完成签到 ,获得积分10
18秒前
18秒前
琉璃完成签到,获得积分10
19秒前
动听衬衫发布了新的文献求助10
19秒前
19秒前
七七完成签到 ,获得积分10
21秒前
21秒前
22秒前
李健的小迷弟应助REBECCA采纳,获得10
22秒前
kiki完成签到,获得积分10
22秒前
jiajiamu发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320015
求助须知:如何正确求助?哪些是违规求助? 4461987
关于积分的说明 13885224
捐赠科研通 4352699
什么是DOI,文献DOI怎么找? 2390804
邀请新用户注册赠送积分活动 1384435
关于科研通互助平台的介绍 1354258