Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory Prediction Using Diffusion Graph Convolutional Networks

计算机科学 邻接矩阵 弹道 图形 概率逻辑 邻接表 人工智能 嵌入 理论计算机科学 算法 物理 天文
作者
Keshu Wu,Yang Zhou,Haotian Shi,Xiaopeng Li,Bin Ran
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3630-3643 被引量:4
标识
DOI:10.1109/tiv.2023.3341071
摘要

Predicting vehicle trajectories is crucial to ensuring automated vehicle operation efficiency and safety, particularly on congested multi-lane highways. In such dynamic environments, a vehicle's motion is determined by its historical behaviors as well as interactions with surrounding vehicles. These intricate interactions arise from unpredictable motion patterns, leading to a wide range of driving behaviors that warrant in-depth investigation. This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction (GIMTP) framework, designed to probabilistically predict future vehicle trajectories by effectively capturing these interactions. Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix. To holistically capture both spatial and temporal dependencies embedded in this dynamic adjacency matrix, the methodology incorporates the Diffusion Graph Convolutional Network (DGCN), thereby providing a graph embedding of both historical states and future states. Furthermore, we employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings for enhanced intention recognition and trajectory prediction. This model gives two-dimensional predictions for each mode of longitudinal and lateral driving behaviors and offers probabilistic future paths with corresponding probabilities, addressing the challenges of complex vehicle interactions and multi-modality of driving behaviors. Validation using real-world trajectory datasets demonstrates the efficiency and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
DJHKFD发布了新的文献求助10
4秒前
7秒前
Okpooko发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
13秒前
zy完成签到,获得积分10
14秒前
zy发布了新的文献求助10
17秒前
18秒前
英俊的铭应助缘来是梦采纳,获得10
20秒前
善学以致用应助张萌采纳,获得10
21秒前
21秒前
77完成签到,获得积分10
22秒前
Nakacoke77发布了新的文献求助10
23秒前
23秒前
皮肤科王东明完成签到,获得积分10
25秒前
Tiffan发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
wanqiu发布了新的文献求助10
29秒前
张萌发布了新的文献求助10
33秒前
Nakacoke77完成签到,获得积分10
33秒前
西瓜完成签到 ,获得积分10
35秒前
大个应助freezing采纳,获得10
36秒前
QL完成签到,获得积分10
37秒前
39秒前
瞌睡社畜发布了新的文献求助30
39秒前
缘来是梦完成签到,获得积分10
43秒前
呱呱完成签到 ,获得积分10
44秒前
冰魂应助魏伯安采纳,获得50
46秒前
刻苦的秋柔完成签到,获得积分10
50秒前
51秒前
53秒前
woheyumi发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
兆兆完成签到 ,获得积分10
58秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881354
求助须知:如何正确求助?哪些是违规求助? 3423725
关于积分的说明 10735812
捐赠科研通 3148676
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087