Normal Assisted Pixel-Visibility Learning With Cost Aggregation for Multiview Stereo

计算机科学 人工智能 计算机视觉 深度图 能见度 像素 立体视觉 图像(数学) 光学 物理
作者
Wei Tong,Xiaorong Guan,Jian Kang,Zhao-Hui Sun,Rob Law,Pedram Ghamisi,Edmond Q. Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24686-24697 被引量:8
标识
DOI:10.1109/tits.2022.3193421
摘要

Multiple-View Stereo (MVS) aims to reconstruct the dense 3D representations of scenes. MVS has potential applications in the fields of autonomous driving (unstructured environment construction) and robotic navigation (visual-inertial navigation). To mitigate the error of depth estimation in low-textured or occluded regions, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. The improvements of this work over the state of the art are as follows: 1) Sparse costs are constructed to jointly predict the initial depth map and surface normal by cost regularization, which proves that the surface normals can be estimated in this way with low memory consumption. 2) A new edge refinement block is developed to refine the coarse surface normal to obtain a fine-grained surface normal map. 3) Instead of using the general variance-based metric to equally aggregate cost, a new content-adaptive cost aggregation mechanism based on the similarity of the neighboring surface normal is designed for reliable cost aggregation. To the best of our knowledge, the proposed work is the first trainable network that leverages surface normal as guidance to capture neighboring pixel-visibility, which is an effective supplement to existing depth/normal estimation frameworks. Experimental results indicate that our method can not only achieve accurate depth estimation for scene perception but also make no concession to the real-time performance and limited memory bottleblock. Multiple-view stereo (MVS) aims to reconstruct the dense 3D representations of scenes. It is widely used in the fields of industrial measurement, autonomous driving, and robotic navigation. To mitigate the error of depth estimation in challenging scenarios, this work proposes a two-stage multi-view stereo network for fast and accurate depth estimation. Our method is the first trainable network that leverages surface normal as pixel-visibility guidance to aggregate reliable cost, which could achieve accurate depth estimation and provide the perception ability for the robot. The proposed method has great potential in the fields of 3D reconstruction, industrial measurement, and robotic navigation to estimate real-time and accurate depth with limited memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜘蛛侠的好邻居完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
cy发布了新的文献求助10
2秒前
2秒前
2秒前
Magic发布了新的文献求助10
3秒前
科研科研还是科研完成签到,获得积分10
3秒前
5秒前
Allure完成签到 ,获得积分10
5秒前
5秒前
kid发布了新的文献求助10
6秒前
CANGSHENG发布了新的文献求助10
6秒前
7秒前
7秒前
JamesPei应助当归采纳,获得10
8秒前
陶醉大侠发布了新的文献求助10
9秒前
青筠wing完成签到 ,获得积分10
9秒前
走着完成签到,获得积分10
10秒前
大个应助wendinfgmei采纳,获得10
11秒前
小羊发布了新的文献求助10
11秒前
Jackson_Cheng发布了新的文献求助30
11秒前
拟好啊完成签到,获得积分20
12秒前
虚拟的冰淇淋完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
上官若男应助自由的冬易采纳,获得10
14秒前
16秒前
16秒前
Jackson_Cheng完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI5应助CANGSHENG采纳,获得10
17秒前
985博士完成签到,获得积分20
18秒前
AYQ发布了新的文献求助10
19秒前
20秒前
21秒前
小羊完成签到,获得积分10
21秒前
JamesPei应助Jackson_Cheng采纳,获得10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867291
求助须知:如何正确求助?哪些是违规求助? 3409544
关于积分的说明 10664273
捐赠科研通 3133804
什么是DOI,文献DOI怎么找? 1728454
邀请新用户注册赠送积分活动 833001
科研通“疑难数据库(出版商)”最低求助积分说明 780517