MVSI-Net: Multi-view attention and multi-scale feature interaction for brain tumor segmentation

计算机科学 特征(语言学) 网(多面体) 分割 比例(比率) 人工智能 模式识别(心理学) 数学 地图学 地理 几何学 语言学 哲学
作者
Junding Sun,Ming Xi Hu,Xiaosheng Wu,Chaosheng Tang,Husam Lahza,Shui‐Hua Wang,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:95: 106484-106484 被引量:2
标识
DOI:10.1016/j.bspc.2024.106484
摘要

Brain tumor segmentation using MRI remains a challenging task due to the high incidence and complexity of gliomas. The irregular variations in tumor location, size, shape, and unclear edge contours of diverse tumor categories contribute to subpar segmentation accuracy. To address these issues, we propose MVSI-Net, a novel MRI brain tumor segmentation method that integrates a multi-view attention mechanism and multi-scale feature interaction into the UNet architecture. Our approach proposes a multi-view attention mechanism that captures global and local features from three different perspectives: channel, content, and position. This mechanism facilitates the localization of the target region and enhances feature representation in lesion areas. Additionally, we design a multi-scale feature interaction module that selectively extracts valuable information from multiple receptive fields of varying sizes, promoting cross-dimensional interaction. As a result, our method enables precise segmentation of the edge contours of different tumor categories. To evaluate the performance of MVSI-Net, we conducted experiments on three widely used datasets: BraTs 2019, BraTs 2020, and BraTs 2021. The experimental results demonstrate that our proposed method outperforms similar approaches in brain tumor segmentation accuracy. In conclusion, our study presents a novel and effective MRI brain tumor segmentation method that addresses the challenges posed by gliomas. However, our model still has certain limitations. Firstly, the model has not been applied in clinical experiments, and there may be challenges in terms of accuracy in certain complex cases. Secondly, further exploration is required to assess the model's generalization capability beyond specific medical image datasets. Moving forward, we plan to address these limitations in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evader_Y完成签到,获得积分10
刚刚
太叔从蓉完成签到 ,获得积分10
刚刚
泥巴发布了新的文献求助10
1秒前
木目今欣发布了新的文献求助10
1秒前
wh完成签到,获得积分10
2秒前
无辜的蜗牛完成签到 ,获得积分10
2秒前
昏睡的蟠桃应助博修采纳,获得150
2秒前
wanci应助萝卜爱吃葡萄皮采纳,获得10
3秒前
3秒前
4秒前
沙沙发布了新的文献求助10
4秒前
4秒前
5秒前
yy发布了新的文献求助10
5秒前
勤恳的向日葵完成签到,获得积分10
6秒前
jj关注了科研通微信公众号
7秒前
8秒前
8秒前
liberation完成签到 ,获得积分0
8秒前
友好聋五发布了新的文献求助10
9秒前
飞飞完成签到,获得积分10
10秒前
gmaster完成签到,获得积分10
10秒前
10秒前
饼饼发布了新的文献求助10
10秒前
lanjiu发布了新的文献求助10
11秒前
cyanpomelo发布了新的文献求助10
12秒前
赘婿应助独孤一草采纳,获得10
12秒前
热心的飞风完成签到,获得积分10
12秒前
杨杨发布了新的文献求助10
13秒前
李爱国应助LL采纳,获得10
13秒前
14秒前
15秒前
lanjiu完成签到,获得积分10
16秒前
李爱国应助SUE采纳,获得10
16秒前
16秒前
慕青应助白兰鸽采纳,获得10
16秒前
结实大白完成签到,获得积分10
18秒前
科研小白完成签到 ,获得积分10
18秒前
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798842
求助须知:如何正确求助?哪些是违规求助? 3344585
关于积分的说明 10320753
捐赠科研通 3061034
什么是DOI,文献DOI怎么找? 1679982
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386