MixUNet: A lightweight medical image segmentation network capturing multidimensional semantic information

计算机科学 分割 人工智能 图像(数学) 情报检索 计算机视觉 模式识别(心理学)
作者
Y Chen,Xiaoqian Zhang,Youdong He,Lifan Peng,Lei Pu,Feng Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:96: 106513-106513 被引量:1
标识
DOI:10.1016/j.bspc.2024.106513
摘要

The efficient segmentation of medical image is of great significance for clinical diagnosis. Recently, TransUNet has achieved great success in medical image segmentation by effectively fusing Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to accomplish the extraction of local and global information. However, since TransUNet is designed as a stitching of CNN and ViT framework level, it has the following problems to be solved: 1) only local and relatively global spatial features of images are extracted; 2) the direct introduction of ViT brings the disadvantages of not easy training and high computational overhead. Therefore, in this work, we propose Mixblock, a hybrid encoder that effectively fuses the superiority of CNN and ViT and is capable of extracting multidimensional high-level semantic information of images instead of being limited to local and global spatial features. Based on this, we design a UNet-like method MixUNet for medical image segmentation, which is a concise and efficient baseline network. Specifically, MixUNet is able to converge after less training without any pre-training, and its number of parameters and computation are only 3.17% and 4.99% of those of TransUNet. In addition, we creatively introduce frequency domain information on skip connection to eliminate the semantic ambiguity between the encoder and decoder, which provides a new perspective for medical image segmentation. Finally, we perform extensive experiments on three publicly available medical image datasets. Experimental results show that MixUNet has significant superiority in segmentation performance, model complexity, and robustness compared to state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyryyrr发布了新的文献求助10
1秒前
hilknk完成签到,获得积分10
3秒前
4秒前
畅快的小兔子完成签到,获得积分10
5秒前
Orange应助xx采纳,获得10
6秒前
杨杨杨发布了新的文献求助200
8秒前
9秒前
某只橘猫君完成签到,获得积分10
10秒前
蔓越莓完成签到 ,获得积分10
11秒前
脑洞疼应助畅快的小兔子采纳,获得10
11秒前
12秒前
12秒前
14秒前
Nolan完成签到,获得积分10
15秒前
惠向雁完成签到,获得积分10
17秒前
17秒前
江夏完成签到 ,获得积分10
18秒前
running发布了新的文献求助10
18秒前
xxxqqq完成签到,获得积分10
22秒前
丘比特应助Lz0330采纳,获得10
23秒前
23秒前
24秒前
24秒前
多巴胺完成签到 ,获得积分10
24秒前
wqr完成签到 ,获得积分10
24秒前
Jasper应助自信猕猴桃采纳,获得10
24秒前
orixero应助Lili采纳,获得10
25秒前
锦鲤发布了新的文献求助10
28秒前
沉默钢笔完成签到,获得积分20
28秒前
30秒前
30秒前
一一完成签到,获得积分20
31秒前
清脆似狮完成签到,获得积分10
32秒前
Leofar完成签到 ,获得积分10
33秒前
科研乞丐完成签到,获得积分10
35秒前
qiao发布了新的文献求助10
35秒前
shinble发布了新的文献求助10
36秒前
38秒前
38秒前
running完成签到 ,获得积分20
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843