MixUNet: A lightweight medical image segmentation network capturing multidimensional semantic information

计算机科学 分割 人工智能 图像(数学) 情报检索 计算机视觉 模式识别(心理学)
作者
Yufeng Chen,Xiaoqian Zhang,Youdong He,Lifan Peng,Lei Pu,Feng Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:96: 106513-106513 被引量:10
标识
DOI:10.1016/j.bspc.2024.106513
摘要

The efficient segmentation of medical image is of great significance for clinical diagnosis. Recently, TransUNet has achieved great success in medical image segmentation by effectively fusing Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to accomplish the extraction of local and global information. However, since TransUNet is designed as a stitching of CNN and ViT framework level, it has the following problems to be solved: 1) only local and relatively global spatial features of images are extracted; 2) the direct introduction of ViT brings the disadvantages of not easy training and high computational overhead. Therefore, in this work, we propose Mixblock, a hybrid encoder that effectively fuses the superiority of CNN and ViT and is capable of extracting multidimensional high-level semantic information of images instead of being limited to local and global spatial features. Based on this, we design a UNet-like method MixUNet for medical image segmentation, which is a concise and efficient baseline network. Specifically, MixUNet is able to converge after less training without any pre-training, and its number of parameters and computation are only 3.17% and 4.99% of those of TransUNet. In addition, we creatively introduce frequency domain information on skip connection to eliminate the semantic ambiguity between the encoder and decoder, which provides a new perspective for medical image segmentation. Finally, we perform extensive experiments on three publicly available medical image datasets. Experimental results show that MixUNet has significant superiority in segmentation performance, model complexity, and robustness compared to state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
avalon应助科研通管家采纳,获得10
刚刚
avalon应助科研通管家采纳,获得10
刚刚
toutou应助科研通管家采纳,获得10
刚刚
刚刚
toutou应助科研通管家采纳,获得10
刚刚
帝国之花应助科研通管家采纳,获得10
刚刚
帝国之花应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
快乐滑板应助1101592875采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
帝国之花应助科研通管家采纳,获得10
1秒前
帝国之花应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
LL发布了新的文献求助10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
avalon应助科研通管家采纳,获得10
1秒前
avalon应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
西米发布了新的文献求助10
2秒前
Akirus应助科研通管家采纳,获得10
2秒前
Akirus应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Tomato应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597