Time series diffusion method: A denoising diffusion probabilistic model for vibration signal generation

扩散 系列(地层学) 降噪 振动 概率逻辑 信号(编程语言) 计算机科学 时间序列 噪音(视频) 声学 算法 控制理论(社会学) 物理 人工智能 机器学习 地质学 古生物学 控制(管理) 图像(数学) 热力学 程序设计语言
作者
Haiming Yi,Lei Hou,Yuhong Jin,Nasser A. Saeed,Ali Kandil,Hao Duan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:216: 111481-111481 被引量:10
标识
DOI:10.1016/j.ymssp.2024.111481
摘要

Diffusion models have demonstrated powerful data generation capabilities in various research fields such as image generation. However, in the field of vibration signal generation, the criteria for evaluating the quality of the generated signal are different from that of image generation and there is a fundamental difference between them. At present, there is no research on the ability of diffusion model to generate vibration signal. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block, ResBlock and TimeEmbedding to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. It is also found that the original DDPM could not generate high quality vibration signals, but the improved U-net in TSDM, which applied the combination of attention block and ResBlock, could effectively improve the quality of vibration signal generation. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术疯子发布了新的文献求助10
刚刚
1秒前
Orange应助江浪浪采纳,获得10
2秒前
璐璐完成签到,获得积分10
2秒前
3秒前
思源应助Ashley采纳,获得10
4秒前
wanzhen发布了新的文献求助10
4秒前
张狗蛋发布了新的文献求助10
5秒前
5秒前
舟舟完成签到,获得积分10
5秒前
6秒前
yilin完成签到,获得积分10
6秒前
橙猫猫完成签到,获得积分10
7秒前
icyeloise完成签到,获得积分10
7秒前
付创完成签到,获得积分10
7秒前
安小野发布了新的文献求助10
7秒前
三泥完成签到,获得积分10
8秒前
8秒前
小叶子完成签到 ,获得积分10
8秒前
Hollow发布了新的文献求助20
9秒前
guoguo完成签到,获得积分10
9秒前
思源应助hqq采纳,获得10
9秒前
孟惜儿完成签到,获得积分10
10秒前
SAUANATT发布了新的文献求助10
11秒前
11秒前
在郑州完成签到,获得积分10
11秒前
Ava应助早川秋Akaiii采纳,获得10
12秒前
落后的破茧完成签到,获得积分20
12秒前
共享精神应助雪白小丸子采纳,获得10
13秒前
傲娇的高烽完成签到 ,获得积分10
14秒前
在郑州发布了新的文献求助10
14秒前
追风少年湃完成签到,获得积分10
15秒前
15秒前
16秒前
任峰完成签到,获得积分10
17秒前
18秒前
18秒前
危机的如波完成签到,获得积分10
19秒前
zhang完成签到,获得积分10
20秒前
Lucas应助456采纳,获得10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393