A machine learning‐based approach to predict energy layer for each field in spot‐scanning proton arc therapy for lung cancer: A feasibility study

质子疗法 肺癌 图层(电子) 弧(几何) 热点(计算机编程) 癌症 领域(数学) 能量(信号处理) 质子 人工智能 计算机科学 医学 材料科学 纳米技术 工程类 肿瘤科 物理 内科学 机械工程 数学 核物理学 统计 纯数学 操作系统
作者
Yuanyuan Ma,Yazhou Li,Penghui Xu,Hui Zhang,Xinyang Zhang,Xinguo Liu,Qiang Li
出处
期刊:Medical Physics [Wiley]
卷期号:51 (7): 4970-4981
标识
DOI:10.1002/mp.17179
摘要

Abstract Background Determining the optimal energy layer (EL) for each field, under considering both dose constraints and delivery efficiency, is crucial to promoting the development of proton arc therapy (PAT) technology. Purpose This study aimed to explore the feasibility and potential clinical benefits of utilizing machine learning (ML) technique to automatically select EL for each field in PAT plans of lung cancer. Methods Proton Bragg peak position (BPP) was employed to characterize EL. The ground truth BPPs for each field were determined using the modified ELO‐SPAT framework. Features in geometric, water‐equivalent thicknesses (WET) and beamlet were defined and extracted. By analyzing the relationship between the extracted features and ground truth, a polynomial regression model with L2‐norm regularization (Ridge regression) was constructed and trained. The performance of the regression model was reported as an error between the predictions and the ground truth. Besides, the predictions were used to make PAT plans (PAT_PRED). These plans were compared with those using the ground truth BPPs (PAT_TRUTH) and the mid‐WET of the target volumes (PAT_MID) in terms of relative biological effectiveness‐weighted dose (RWD) distributions. One hundred ten patients with lung cancer, a total of 7920 samples, were enrolled retrospectively, with 5940 cases randomly selected as the training set and the remaining 1980 cases as the testing set. Nine patients (648 samples) were collected additionally to evaluate the regression model in terms of plan quality and robustness. Results With regard to the prediction errors, the root mean squared errors and mean absolute errors between the ML‐predicted and ground truth BPPs for the testing set were 9.165 and 6.572 mm, respectively, indicating differences of approximately two to three ELs. As for plan quality, the PAT_TRUTH and PAT_PRED plans performed similarly in terms of plan robustness, target coverage and organs at risk (OARs) protection, with differences smaller than 0.5 Gy(RBE). This trend was also observed for dose conformity and uniformity. The PAT_MID plans produced the lowest robustness index and lowest doses to OARs, along with the highest heterogeneity index, indicating better protection for OARs, improved plan robustness, but compromised dose homogeneity. Additionally, for relatively small tumor sizes, the PAT_MID plan demonstrated a notably poor dose conformity index. Conclusions Within this cohort under investigation, our study demonstrated the feasibility of using ML technique to predict ELs for each field, offering a fast (within 2 s) and memory‐efficient reduced way to select ELs for PAT plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助明天会更美好采纳,获得10
1秒前
阿尔弗雷德完成签到 ,获得积分10
2秒前
greatsnow发布了新的文献求助10
3秒前
缓慢思枫发布了新的文献求助10
3秒前
万能图书馆应助一北采纳,获得10
5秒前
LL完成签到,获得积分10
8秒前
华仔应助小五屁孩儿采纳,获得10
10秒前
香蕉觅云应助小小的飞机采纳,获得10
11秒前
tkxfy完成签到,获得积分10
12秒前
科研通AI5应助LL采纳,获得10
13秒前
13秒前
加减乘除发布了新的文献求助10
13秒前
我爱学习完成签到 ,获得积分10
14秒前
坦率的访彤完成签到,获得积分10
16秒前
共享精神应助karcorl采纳,获得30
18秒前
一北发布了新的文献求助10
18秒前
Chris完成签到,获得积分10
19秒前
科研通AI2S应助zone采纳,获得10
19秒前
LYchem完成签到,获得积分10
20秒前
Terahertz完成签到 ,获得积分10
23秒前
26秒前
26秒前
28秒前
29秒前
鹿友绿发布了新的文献求助10
29秒前
小欧完成签到,获得积分10
30秒前
我见青山完成签到,获得积分10
30秒前
31秒前
Hermit发布了新的文献求助10
32秒前
脑洞疼应助Tian采纳,获得10
33秒前
34秒前
34秒前
37秒前
李健的小迷弟应助澍澍采纳,获得10
37秒前
39秒前
baolipao完成签到,获得积分10
39秒前
小荣布布完成签到 ,获得积分10
40秒前
刘佳发布了新的文献求助10
40秒前
蔡继海发布了新的文献求助10
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976