Robust Drone Delivery with Weather Information

无人机 调度(生产过程) 运筹学 计算机科学 可扩展性 聚类分析 数学优化 工程类 数学 遗传学 生物 数据库 机器学习
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1402-1421 被引量:25
标识
DOI:10.1287/msom.2022.0339
摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
1秒前
3秒前
ttttaf完成签到,获得积分10
3秒前
科研通AI5应助优美的冥幽采纳,获得10
4秒前
5秒前
7秒前
8秒前
科研通AI5应助博修采纳,获得30
9秒前
树上香蕉果完成签到,获得积分10
9秒前
哭泣以筠发布了新的文献求助10
9秒前
111发布了新的文献求助10
10秒前
liu发布了新的文献求助10
11秒前
ffff发布了新的文献求助10
12秒前
ccx发布了新的文献求助10
14秒前
阿白白完成签到,获得积分10
16秒前
17秒前
17秒前
Lucas应助猪猪hero采纳,获得10
17秒前
20秒前
20秒前
hellocc发布了新的文献求助10
20秒前
YCW发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
daiV发布了新的文献求助10
24秒前
ln发布了新的文献求助10
24秒前
一修发布了新的文献求助10
25秒前
大腹便便发布了新的文献求助10
25秒前
nowfitness完成签到,获得积分10
27秒前
27秒前
CHENG发布了新的文献求助10
27秒前
黄丽发布了新的文献求助10
28秒前
29秒前
Lucas应助大腹便便采纳,获得10
30秒前
30秒前
猪猪hero发布了新的文献求助10
30秒前
31秒前
Yvonneyzl完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397