Robust Drone Delivery with Weather Information

无人机 调度(生产过程) 运筹学 计算机科学 可扩展性 聚类分析 数学优化 工程类 数学 遗传学 数据库 生物 机器学习
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1402-1421 被引量:32
标识
DOI:10.1287/msom.2022.0339
摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷傲珊应助大力的水风采纳,获得10
刚刚
liu完成签到,获得积分10
刚刚
嗯哼完成签到,获得积分10
刚刚
wisdom应助yesir采纳,获得10
1秒前
科研通AI5应助三石采纳,获得10
1秒前
背后书芹完成签到,获得积分10
2秒前
搜集达人应助TUT123采纳,获得10
2秒前
不吃汉堡完成签到 ,获得积分10
2秒前
2秒前
xiaoxin完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
刘某完成签到,获得积分10
4秒前
CodeCraft应助云淡风轻采纳,获得30
4秒前
哈哈哈完成签到,获得积分10
5秒前
贝林7完成签到,获得积分10
5秒前
5秒前
5秒前
shihuili完成签到,获得积分20
6秒前
DreamLly发布了新的文献求助10
6秒前
糊涂的勒完成签到,获得积分10
6秒前
在水一方应助魔幻妖妖采纳,获得10
6秒前
大模型应助孟虹沅采纳,获得10
8秒前
萍萍发布了新的文献求助10
8秒前
8秒前
刘某发布了新的文献求助30
8秒前
8秒前
郭mm发布了新的文献求助10
8秒前
喔喔奶糖发布了新的文献求助10
8秒前
candice624完成签到 ,获得积分10
8秒前
9秒前
桑葚草莓冰淇淋完成签到 ,获得积分10
9秒前
9秒前
9秒前
在水一方应助现代的烤鸡采纳,获得10
10秒前
江河完成签到,获得积分10
10秒前
ASBL发布了新的文献求助10
10秒前
11秒前
QR发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384568
求助须知:如何正确求助?哪些是违规求助? 3877805
关于积分的说明 12079791
捐赠科研通 3521208
什么是DOI,文献DOI怎么找? 1932416
邀请新用户注册赠送积分活动 973680
科研通“疑难数据库(出版商)”最低求助积分说明 871863