亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification

计算机科学 人工智能 特征提取 脑电图 模式识别(心理学) 特征(语言学) 一般化 接头(建筑物) 频道(广播) 特征工程 深度学习 机器学习 语音识别 建筑工程 心理学 语言学 哲学 工程类 数学分析 计算机网络 数学 精神科
作者
Yu Liang,Chenlong Zhang,Shan An,Zaitian Wang,Kaize Shi,Tianhao Peng,Yuqing Ma,Xiaoyang Xie,Jian He,Kun Zheng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036011-036011
标识
DOI:10.1088/1741-2552/ad4743
摘要

Abstract Objective . Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting. Approach . To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets. Main results . In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios. Significance . FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
53秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Kz发布了新的文献求助10
1分钟前
科研通AI5应助Kz采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
XingRang发布了新的文献求助10
2分钟前
夏花般灿烂完成签到,获得积分10
2分钟前
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
XingRang完成签到,获得积分20
3分钟前
李健应助XingRang采纳,获得10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
Emanon发布了新的文献求助10
6分钟前
从容芮应助桃子爱学习采纳,获得30
6分钟前
Emanon完成签到,获得积分10
6分钟前
李健应助科研通管家采纳,获得10
7分钟前
7分钟前
kuoping完成签到,获得积分0
7分钟前
8分钟前
GingerF应助科研通管家采纳,获得50
9分钟前
Criminology34应助科研通管家采纳,获得10
9分钟前
9分钟前
浮游应助DFS采纳,获得10
9分钟前
9分钟前
CRUSADER完成签到,获得积分10
9分钟前
9分钟前
xt完成签到,获得积分10
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078373
求助须知:如何正确求助?哪些是违规求助? 4297135
关于积分的说明 13387869
捐赠科研通 4119849
什么是DOI,文献DOI怎么找? 2256294
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194218