Graph Transformer Network Incorporating Sparse Representation for Multivariate Time Series Anomaly Detection

多元统计 异常检测 变压器 计算机科学 系列(地层学) 图形 时间序列 数据挖掘 算法 模式识别(心理学) 人工智能 理论计算机科学 工程类 机器学习 地质学 电气工程 电压 古生物学
作者
Qian Yang,Jiaming Zhang,Junjie Zhang,Cailing Sun,Shanyi Xie,Shangdong Liu,Yimu Ji
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (11): 2032-2032
标识
DOI:10.3390/electronics13112032
摘要

Cyber–physical systems (CPSs) serve as the pivotal core of Internet of Things (IoT) infrastructures, such as smart grids and intelligent transportation, deploying interconnected sensing devices to monitor operating status. With increasing decentralization, the surge in sensor devices expands the potential vulnerability to cyber attacks. It is imperative to conduct anomaly detection research on the multivariate time series data that these sensors produce to bolster the security of distributed CPSs. However, the high dimensionality, absence of anomaly labels in real-world datasets, and intricate non-linear relationships among sensors present considerable challenges in formulating effective anomaly detection algorithms. Recent deep-learning methods have achieved progress in the field of anomaly detection. Yet, many methods either rely on statistical models that struggle to capture non-linear relationships or use conventional deep learning models like CNN and LSTM, which do not explicitly learn inter-variable correlations. In this study, we propose a novel unsupervised anomaly detection method that integrates Sparse Autoencoder with Graph Transformer network (SGTrans). SGTrans leverages Sparse Autoencoder for the dimensionality reduction and reconstruction of high-dimensional time series, thus extracting meaningful hidden representations. Then, the multivariate time series are mapped into a graph structure. We introduce a multi-head attention mechanism from Transformer into graph structure learning, constructing a Graph Transformer network forecasting module. This module performs attentive information propagation between long-distance sensor nodes and explicitly models the complex temporal dependencies among them to enhance the prediction of future behaviors. Extensive experiments and evaluations on three publicly available real-world datasets demonstrate the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newfat发布了新的文献求助10
1秒前
小胖完成签到,获得积分10
2秒前
jsdiohfsiodhg完成签到,获得积分10
2秒前
希望天下0贩的0应助Siri采纳,获得10
3秒前
漂亮灵阳完成签到,获得积分10
3秒前
sparks完成签到,获得积分10
3秒前
starleo发布了新的文献求助10
3秒前
XYZ完成签到 ,获得积分10
4秒前
Star1983发布了新的文献求助10
4秒前
李小白完成签到,获得积分10
5秒前
犹豫的天问完成签到,获得积分20
5秒前
牧绯完成签到,获得积分10
5秒前
biaoguo完成签到,获得积分10
7秒前
姜忆霜完成签到 ,获得积分10
7秒前
everyone_woo完成签到,获得积分10
9秒前
文思泉涌完成签到,获得积分10
9秒前
务实的亦巧完成签到,获得积分10
10秒前
南山无玫落完成签到 ,获得积分10
10秒前
传奇3应助mojito采纳,获得10
10秒前
Ayan完成签到,获得积分10
10秒前
oblivious完成签到,获得积分10
10秒前
dominic12361完成签到 ,获得积分10
11秒前
骑着火车撵火箭完成签到,获得积分10
11秒前
11秒前
cdercder应助等待的雪碧采纳,获得10
11秒前
Estella完成签到,获得积分10
12秒前
开心完成签到,获得积分10
12秒前
先一完成签到 ,获得积分10
13秒前
唠叨的觅松完成签到,获得积分10
13秒前
成就映秋完成签到,获得积分10
14秒前
tanglu完成签到,获得积分10
14秒前
chinbaor完成签到,获得积分10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
甜晞完成签到,获得积分10
16秒前
王佳琪完成签到,获得积分10
17秒前
机灵柚子应助琥1采纳,获得20
17秒前
好运发布了新的文献求助10
17秒前
18秒前
茄子完成签到,获得积分10
18秒前
小鱼完成签到 ,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526