已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI nutritionist: Intelligent software as the next generation pioneer of precision nutrition

营养师 计算机科学 软件 人工智能 数据科学 医学 病理 程序设计语言
作者
Ying Liang,Ran Xiao,Fang Huang,Qinlu Lin,Jia Guo,Wenbin Zeng,Jie Dong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108711-108711 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108711
摘要

With the rapid development of information technology and artificial intelligence (AI), people have acquired the abilities and are encouraged to develop intelligent tools and software, which begins to shed light on intelligent and precise food nutrition. Despite the rapid development of such software, disparities still exist in terms of methodology, contents, and implementation strategies. Hence, a set of panoramic profiles is urgently needed to elucidate their values and guide their future development. Here a comprehensive review was conducted aiming to summarize and compare the objects, contents, intelligent algorithms, and functions realized by the already released software in current research. Consequently, 177 AI nutritionists in recent years were collected and analyzed. The advantages, limitations, and trends concerning their application scenarios were analyzed. It was found that AI nutritionists have been gradually advancing the production modes and efficiency of food recognition, dietary recording/monitoring, nutritional assessment, and nutrient/recipe recommendation. Most AI nutritionists have a relatively low level of intelligence. However, new trends combining advanced AI algorithms, intelligent sensors and big data are coming with new applications in real-time and precision nutrition. AI models concerning molecular-level behaviors are becoming the new focus to drive AI nutritionists. Multi-center and multi-level studies have also gradually been realized to be necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助LYT采纳,获得30
1秒前
Lucas应助研友_LMN2rn采纳,获得10
2秒前
传奇3应助醉酒笑红尘采纳,获得10
2秒前
Owen应助CAS_lyw采纳,获得10
2秒前
缘星紫发布了新的文献求助10
2秒前
田様应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
竹筏过海应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
无限的一手完成签到 ,获得积分10
5秒前
6秒前
谨慎初兰完成签到,获得积分20
7秒前
HHHM完成签到,获得积分10
9秒前
活力晓夏完成签到,获得积分10
9秒前
小章鱼完成签到 ,获得积分10
11秒前
zoe发布了新的文献求助10
11秒前
阿九发布了新的文献求助10
12秒前
aiinga发布了新的文献求助30
13秒前
Gengen完成签到,获得积分10
17秒前
19秒前
所所应助阳光男孩采纳,获得10
23秒前
CAS_lyw发布了新的文献求助10
23秒前
zhongzhong发布了新的文献求助10
24秒前
轻轻完成签到 ,获得积分20
25秒前
xingcheng完成签到,获得积分0
29秒前
30秒前
SciGPT应助T_MC郭采纳,获得10
30秒前
西喜完成签到,获得积分10
32秒前
调皮傲易完成签到 ,获得积分10
33秒前
ZhouYW应助阳光男孩采纳,获得10
34秒前
木子发布了新的文献求助10
35秒前
研友_VZG7GZ应助醉酒笑红尘采纳,获得10
36秒前
庾海完成签到,获得积分10
39秒前
西一阿铭完成签到,获得积分10
40秒前
40秒前
上官若男应助小波采纳,获得10
41秒前
41秒前
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792253
求助须知:如何正确求助?哪些是违规求助? 3336501
关于积分的说明 10281144
捐赠科研通 3053220
什么是DOI,文献DOI怎么找? 1675522
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761436