清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research Challenges, Recent Advances, and Popular Datasets in Deep Learning-Based Underwater Marine Object Detection: A Review

水下 计算机科学 目标检测 人工智能 稳健性(进化) 声纳 深度学习 杠杆(统计) 数据科学 系统工程 机器学习 工程类 模式识别(心理学) 海洋学 地质学 生物化学 化学 基因
作者
Meng Joo Er,Jie Chen,Yani Zhang,Wenxiao Gao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (4): 1990-1990 被引量:18
标识
DOI:10.3390/s23041990
摘要

Underwater marine object detection, as one of the most fundamental techniques in the community of marine science and engineering, has been shown to exhibit tremendous potential for exploring the oceans in recent years. It has been widely applied in practical applications, such as monitoring of underwater ecosystems, exploration of natural resources, management of commercial fisheries, etc. However, due to complexity of the underwater environment, characteristics of marine objects, and limitations imposed by exploration equipment, detection performance in terms of speed, accuracy, and robustness can be dramatically degraded when conventional approaches are used. Deep learning has been found to have significant impact on a variety of applications, including marine engineering. In this context, we offer a review of deep learning-based underwater marine object detection techniques. Underwater object detection can be performed by different sensors, such as acoustic sonar or optical cameras. In this paper, we focus on vision-based object detection due to several significant advantages. To facilitate a thorough understanding of this subject, we organize research challenges of vision-based underwater object detection into four categories: image quality degradation, small object detection, poor generalization, and real-time detection. We review recent advances in underwater marine object detection and highlight advantages and disadvantages of existing solutions for each challenge. In addition, we provide a detailed critical examination of the most extensively used datasets. In addition, we present comparative studies with previous reviews, notably those approaches that leverage artificial intelligence, as well as future trends related to this hot topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨尔莫斯完成签到,获得积分10
14秒前
无情夏寒完成签到 ,获得积分10
17秒前
今后应助飞翔的企鹅采纳,获得10
25秒前
Sean完成签到 ,获得积分10
28秒前
JY完成签到 ,获得积分10
38秒前
席江海完成签到,获得积分10
41秒前
飞翔的企鹅完成签到,获得积分10
47秒前
digger2023完成签到 ,获得积分10
50秒前
madison完成签到 ,获得积分10
1分钟前
Aurora完成签到 ,获得积分10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
LZQ发布了新的文献求助10
2分钟前
2分钟前
天边发布了新的文献求助10
2分钟前
2分钟前
GG完成签到 ,获得积分10
2分钟前
WTaMi完成签到 ,获得积分10
2分钟前
Owllight发布了新的文献求助30
2分钟前
Galri完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
甜甜友容完成签到,获得积分10
3分钟前
czj完成签到 ,获得积分10
3分钟前
Nancy0818完成签到 ,获得积分10
3分钟前
章鱼完成签到,获得积分10
3分钟前
钱念波发布了新的文献求助10
4分钟前
大个应助找文献的天才狗采纳,获得10
4分钟前
天边完成签到 ,获得积分10
4分钟前
科研阿白完成签到 ,获得积分10
4分钟前
数学情缘完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
shouyu29应助科研通管家采纳,获得10
5分钟前
FFFFFF完成签到 ,获得积分10
5分钟前
细心的如天完成签到 ,获得积分0
5分钟前
5分钟前
hover发布了新的文献求助10
5分钟前
钱念波发布了新的文献求助10
5分钟前
轩辕中蓝完成签到 ,获得积分10
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798514
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318410
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340