Performance evaluation of CNN-based crack detection for electrical discharge machined steel surfaces

电火花加工 接收机工作特性 机械加工 计算机科学 背景(考古学) 卷积神经网络 人工智能 过程(计算) F1得分 模式识别(心理学) 精确性和召回率 机器学习 工程类 机械工程 生物 操作系统 古生物学
作者
M.Subbu Lakshmi,Raja Das
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part E: Journal Of Process Mechanical Engineering [SAGE]
卷期号:238 (2): 738-751 被引量:7
标识
DOI:10.1177/09544089221146464
摘要

Electrical discharge machining (EDM) is a non-traditional machining technique that is frequently employed on hard materials. In today's industrial practice, it has been the most prevalent non-traditional material removal procedure. It allows you to process challenging materials and construct complicated forms with excellent accuracy. In the context of image pre-processing approaches to discover defective or non-defective machining pieces through EDM, the Centre of attention of this article is utilizing convolutional neural networks (CNN) to create a machinery piece defective detection approach. A total of 180 datasets of varying sizes produced from public datasets, the proposed CNN model is assessed and compared to pre-trained networks, namely the VGG-16, VGG-19, ResNet-50, and ResNet-101 models. The assessment took into crack detection outcomes, and classification parameters such as accuracy, precision, recall, and F1-score. Also, we have given the receiver operating characteristic (ROC) curve, precision–recall curve, and confusion matrices for each model for the required classification to predict the defective cracks, and also, we included the histograms to find the probabilities of defective and non-defective cracks. The suggested model can discriminate between pictures that are cracked and those that are not. According to the findings, VGG-16 has the best accuracy out of all of these models. In comparison to prior conventional procedures, the proposed EDM crack defective detecting methodology gives great accuracy.VGG-16 attains 93% accuracy, 93% of F1-score, 94% of precision, 93% of recall, 93% of specificity, as well as 97% of AUC, testing findings suggest that our strategy is capable of incredible performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
White.K完成签到,获得积分10
1秒前
laruijoint完成签到,获得积分10
1秒前
2秒前
晚来风与雪完成签到 ,获得积分10
2秒前
景一诚发布了新的文献求助10
2秒前
紧张的不二完成签到,获得积分10
3秒前
并不瑶远发布了新的文献求助10
3秒前
AbeleChuang完成签到,获得积分10
4秒前
荔枝完成签到,获得积分20
5秒前
sfliufighting发布了新的文献求助10
5秒前
cell06完成签到,获得积分10
5秒前
5秒前
羽寞完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
Czerkingsky完成签到,获得积分10
7秒前
Ava应助嘉嘉sone采纳,获得10
8秒前
shhoing应助早安采纳,获得20
8秒前
旺仔小馒头完成签到 ,获得积分10
9秒前
神勇秋白发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
大模型应助羽寞采纳,获得10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
斯文败类应助sfliufighting采纳,获得10
11秒前
景一诚完成签到,获得积分20
11秒前
赫连烙发布了新的文献求助10
12秒前
顾矜应助LiangWQ采纳,获得10
12秒前
勤奋灯泡完成签到,获得积分20
12秒前
12秒前
西瓜宝宝完成签到,获得积分10
13秒前
海阔云高完成签到 ,获得积分10
14秒前
端庄亿先发布了新的文献求助10
14秒前
14秒前
14秒前
卫青柏完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537211
求助须知:如何正确求助?哪些是违规求助? 4624764
关于积分的说明 14593110
捐赠科研通 4565324
什么是DOI,文献DOI怎么找? 2502241
邀请新用户注册赠送积分活动 1480964
关于科研通互助平台的介绍 1452155