Cross-modality salient object detection network with universality and anti-interference

计算机科学 普遍性(动力系统) 相互信息 RGB颜色模型 突出 模式识别(心理学) 计算机视觉 特征提取 目标检测 人工智能 物理 量子力学
作者
Hongwei Wen,Kechen Song,Liming Huang,Han Wang,Yunhui Yan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:264: 110322-110322 被引量:18
标识
DOI:10.1016/j.knosys.2023.110322
摘要

Cross-modality salient object detection (SOD) mainly includes RGB-D salient object detection and RGB-T salient object detection. Depth or thermal infrared information is used to compensate for the RGB information. Although cross-modality salient object detection has achieved excellent results, the current methods need to be improved in terms of universality and anti-interference. Therefore, we propose a cross-modality salient object detection network with universality and anti-interference. First, we offer a feature extraction strategy to enhance the features in the feature extraction stage. It can promote the mutual improvement of different modal information and avoid the influence of interference on the subsequent process. Then we use the graph mapping reasoning module (GMRM) to infer the high-level semantics to obtain valuable information. It enables our proposed method to accurately locate the objects in different scenes and interference to improve the universality and anti-interference of the method. Finally, we adopt a mutual guidance fusion module (MGFM), including a modality adaptive fusion module (MAFM) and across-level mutual guidance fusion module (ALMGFM), to carry out an efficient and reasonable fusion of multi-scale and multi-modality information. To verify the universality and anti-interference of our proposed method, we conduct experiments on many RGB-D/T SOD datasets and compare our method with the current state-of-the-art methods. Experimental results show that our method performs well in universality and anti-interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AUV发布了新的文献求助10
刚刚
1秒前
xin完成签到,获得积分10
1秒前
2秒前
酷酷妙梦完成签到,获得积分10
2秒前
Amanda完成签到,获得积分10
3秒前
orixero应助代舒宇采纳,获得10
4秒前
可爱多发布了新的文献求助10
5秒前
JamesPei应助合适朋友采纳,获得10
5秒前
xiaocoub完成签到,获得积分10
5秒前
汉堡包应助WH采纳,获得10
5秒前
伶俐的青梦完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Sharin发布了新的文献求助10
7秒前
英俊的铭应助关mou采纳,获得10
8秒前
善学以致用应助蓝天采纳,获得10
8秒前
9秒前
shelley完成签到,获得积分20
9秒前
火山蜗牛发布了新的文献求助10
9秒前
深情安青应助Duola采纳,获得10
10秒前
10秒前
10秒前
11秒前
ding应助悲凉的孤萍采纳,获得10
11秒前
优美紫槐发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
14秒前
15秒前
qingqing发布了新的文献求助10
15秒前
16秒前
星辰大海应助Melooo3采纳,获得10
16秒前
17秒前
代舒宇发布了新的文献求助10
17秒前
.....完成签到,获得积分10
17秒前
18秒前
Akim应助Paper多多采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764