Network traffic prediction model based on improved VMD and PSO‐ELM

计算机科学 极限学习机 粒子群优化 人工智能 算法 数学优化 人工神经网络 数学
作者
Jinmei Shi,Jinghe Zhou,Junying Feng,Huandong Chen
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:36 (7) 被引量:2
标识
DOI:10.1002/dac.5448
摘要

Summary The rapid update of computing power leads to exponential data traffic growth, and the incidence of network attacks is also increasing. It is significantly important to analyze and predict network traffic accurately in the early stage and take corresponding preventive measures. The existing network flow integrated forecasting models still have some bottlenecks that are difficult to solve, for example, the slow optimization speed of modal decomposition parameters, easy falling into local optimal solutions, the slow convergence speed of the training process, and poor generalization capability. In this paper, particle swarm optimization (PSO) is utilized to improve the parameters selection process of the variational mode decomposition (VMD) algorithm and the extreme learning machine (ELM) algorithm. First, the PSO‐VMD combined with multi‐scale permutation entropy (MPE) is utilized to decompose the original network flow, and multiple eigenmode components are obtained. Second, the PSO‐ELM is utilized to train the network traffic prediction model, and the PSO parameters in PSO‐ELM are updated through adaptive weight adjustment and synchronous learning factors to increase the training and prediction speed, and the component prediction results are reconstructed to get a high‐precision network flow forecasting result. Finally, through the prediction and verification of the public network flow data of the WIDE backbone, the result of this experiment indicates that the VMD‐PSO‐ELM can break through the bottlenecks of slow optimization speed of VMD decomposition parameters, reduce the computational complexity of ELM, accelerate the convergence speed, and increase the forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
916完成签到 ,获得积分10
3秒前
3秒前
物化有机会吗完成签到,获得积分10
7秒前
DYY发布了新的文献求助10
8秒前
小蘑菇应助shouyu29采纳,获得10
9秒前
无语的沛春完成签到,获得积分10
9秒前
负责的绍辉完成签到,获得积分20
10秒前
六月初八夜完成签到,获得积分10
11秒前
13秒前
HEAUBOOK应助猪猪hero采纳,获得10
14秒前
ding应助prim采纳,获得30
14秒前
15秒前
Lee发布了新的文献求助10
15秒前
活力的彩虹完成签到 ,获得积分10
18秒前
科研通AI5应助夏一苒采纳,获得10
19秒前
bc应助joleisalau采纳,获得20
19秒前
19秒前
19秒前
Lee完成签到,获得积分10
21秒前
可爱小哪吒完成签到,获得积分10
23秒前
24秒前
李爱国应助小小邓采纳,获得10
24秒前
飞快的薯片完成签到,获得积分10
25秒前
手术刀完成签到 ,获得积分10
27秒前
摸鱼大师完成签到 ,获得积分10
27秒前
雾野发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助负数采纳,获得10
29秒前
谨慎采白完成签到 ,获得积分10
30秒前
动漫大师发布了新的文献求助10
31秒前
大壮完成签到,获得积分10
32秒前
32秒前
humengxiao完成签到,获得积分10
32秒前
不倦应助熹微采纳,获得10
32秒前
鹅1发布了新的文献求助10
32秒前
熊二完成签到 ,获得积分10
33秒前
小远远完成签到,获得积分10
33秒前
啦啦啦啦啦完成签到 ,获得积分10
33秒前
Leexxxhaoo完成签到,获得积分10
36秒前
bkagyin应助小远远采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776240
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207338
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666499
邀请新用户注册赠送积分活动 797502
科研通“疑难数据库(出版商)”最低求助积分说明 757868