Quantifying microstructures of earth materials using higher-order spatial correlations and deep generative adversarial networks

对抗制 生成语法 生成对抗网络 计算机科学 人工智能 订单(交换) 深度学习 地质学 数据科学 财务 经济
作者
Hamed Amiri,Ivan Vasconcelos,Yang Jiao,Pei‐En Chen,Oliver Plümper
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:9
标识
DOI:10.1038/s41598-023-28970-w
摘要

Abstract The key to most subsurface processes is to determine how structural and topological features at small length scales, i.e., the microstructure, control the effective and macroscopic properties of earth materials. Recent progress in imaging technology has enabled us to visualise and characterise microstructures at different length scales and dimensions. However, one limitation of these technologies is the trade-off between resolution and sample size (or representativeness). A promising approach to this problem is image reconstruction which aims to generate statistically equivalent microstructures but at a larger scale and/or additional dimension. In this work, a stochastic method and three generative adversarial networks (GANs), namely deep convolutional GAN (DCGAN), Wasserstein GAN with gradient penalty (WGAN-GP), and StyleGAN2 with adaptive discriminator augmentation (ADA), are used to reconstruct two-dimensional images of two hydrothermally rocks with varying degrees of complexity. For the first time, we evaluate and compare the performance of these methods using multi-point spatial correlation functions—known as statistical microstructural descriptors (SMDs)—ultimately used as external tools to the loss functions. Our findings suggest that a well-trained GAN can reconstruct higher-order, spatially-correlated patterns of complex earth materials, capturing underlying structural and morphological properties. Comparing our results with a stochastic reconstruction method based on a two-point correlation function, we show the importance of coupling training/assessment of GANs with higher-order SMDs, especially in the case of complex microstructures. More importantly, by quantifying original and reconstructed microstructures via different GANs, we highlight the interpretability of these SMDs and show how they can provide valuable insights into the spatial patterns in the synthetic images, allowing us to detect common artefacts and failure cases in training GANs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静野狼完成签到,获得积分10
刚刚
jerry完成签到 ,获得积分10
2秒前
8秒前
Emma完成签到 ,获得积分10
10秒前
最美夕阳红完成签到,获得积分10
13秒前
cdercder应助科研通管家采纳,获得20
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
18秒前
奥斯卡完成签到,获得积分0
19秒前
lielizabeth完成签到 ,获得积分0
22秒前
怡心亭完成签到 ,获得积分0
23秒前
健忘的晓小完成签到 ,获得积分10
26秒前
快乐的90后fjk完成签到 ,获得积分10
29秒前
现实的大白完成签到 ,获得积分10
31秒前
35秒前
39秒前
万能图书馆应助薇儿采纳,获得30
44秒前
美少叔叔完成签到 ,获得积分10
45秒前
光亮若翠完成签到,获得积分10
49秒前
white完成签到,获得积分10
51秒前
wefor完成签到 ,获得积分10
57秒前
cz完成签到 ,获得积分10
59秒前
重重重飞完成签到 ,获得积分10
1分钟前
午后狂睡完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
YingxueRen完成签到,获得积分10
1分钟前
巴啦啦小魔仙完成签到 ,获得积分10
1分钟前
可耐的问柳完成签到 ,获得积分10
1分钟前
Zhao完成签到 ,获得积分10
1分钟前
Nereus完成签到 ,获得积分10
1分钟前
zzz完成签到 ,获得积分10
1分钟前
cincrady完成签到,获得积分10
1分钟前
大牛顿发布了新的文献求助10
1分钟前
丁丁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
张雨欣完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840870
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526510
捐赠科研通 3102624
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632