亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantifying Floating Litter Fluxes with a Semi-Supervised Learning-Based Framework

环境科学 垃圾箱 计算机科学 生态学 生物
作者
Tianlong Jia,Riccardo Taormina,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Paul Vriend,Imke Okkerman
标识
DOI:10.5194/egusphere-egu25-12591
摘要

Supervised deep learning methods have been widely employed by researchers and practitioners to detect floating macroplastic litter (plastic items >5 mm) in (fresh)water bodies. However, their potential to quantify litter fluxes in rivers with wide cross-sections remains underexplored. Additionally, supervised learning (SL) models also face practical challenges, including the dependency on extensive labeled data, and low detection performance for small litter items.To overcome these issues, we propose a semi-supervised learning (SSL)-based framework for quantifying cross-sectional floating litter fluxes. This framework includes four steps: (1) developing a robust litter detection model using SSL methods, (2) collecting images of river surfaces from multiple locations along the target river cross-section using cameras, (3) applying the developed model to detect and count litter items in images, and (4) post-processing the detection results to quantify cross-sectional litter fluxes. In the first step, we first pre-trained a Residual Network with 50 layers (ResNet50) on a large amount of unlabeled data (≈500k images) using a self-supervised learning method, Swapping Assignments between multiple Views of the same image (SwAV). Then, we fine-tuned a Faster Region-based Convolutional Neural Network (Faster R-CNN) with the ResNet50 backbone on a limited amount of labeled data (1.1k images with 1.3k annotated litter items). We introduced a Slicing Aided Hyper Inference (SAHI) method to enhance accuracy of Faster R-CNN in detecting small litter.We evaluated the in-domain detection performance of SSL models using images from canals and waterways of the Netherlands, Indonesia and Vietnam. Additionally, we assessed the zero-shot out-of-domain detection performance of SSL models, and litter flux quantification performance of the proposed framework on a case study in the Saigon river in Vietnam (including the Thu Thiem and Binh Loi locations). The assessment of out-of-domain detection performance was conducted with and without SAHI method. We benchmarked our results against the SL methods using the same Faster R-CNN architecture with ImageNet pre-trained weights. The results show that the SSL models significantly outperform baseline benchmarks, with an in-domain F1-score increase of 0.2, and a zero-shot out-of-domain median F1-score increase of 0.14 for Thu Thiem and 0.07 for Binh Loi. The SSL-based framework quantifies litter fluxes nearly twice as high as the baseline SL-based framework, offering estimates that align more closely with human-measured litter fluxes. Furthermore, the SAHI method correctly identifies 54 additional small litter items (with areas below 1,000 cm²) in the case study, compared to the results obtained without the SAHI method.Our findings underscore a promising pathway for developing a robust framework for macroplastic flux measurement by integrating a foundation model, a transformative approach driving the current artificial intelligence revolution across diverse domains. By scaling our proposed framework with larger and more diversified datasets, we can make significant progress in developing advanced monitoring systems to tackle the global challenge of plastic pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐易哩完成签到,获得积分20
4秒前
滴滴滴完成签到 ,获得积分10
9秒前
26秒前
白云发布了新的文献求助10
31秒前
1分钟前
rpe发布了新的文献求助10
1分钟前
大模型应助rpe采纳,获得10
1分钟前
1分钟前
2分钟前
念神珠恋玥完成签到,获得积分10
2分钟前
poki完成签到 ,获得积分10
2分钟前
kmzzy完成签到,获得积分10
2分钟前
瓜皮糖浆完成签到,获得积分10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
2分钟前
Ricardo完成签到 ,获得积分10
2分钟前
lisa完成签到 ,获得积分10
2分钟前
rpe发布了新的文献求助10
2分钟前
mhq完成签到 ,获得积分10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
鲤鱼笑白完成签到,获得积分10
4分钟前
4分钟前
4分钟前
JamesPei应助ARESCI采纳,获得10
4分钟前
小向完成签到,获得积分20
5分钟前
多亿点完成签到 ,获得积分10
5分钟前
5分钟前
LICC发布了新的文献求助10
5分钟前
默顿的笔记本完成签到,获得积分20
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
代芙应助默顿的笔记本采纳,获得10
5分钟前
6分钟前
代芙应助默顿的笔记本采纳,获得10
6分钟前
草木完成签到 ,获得积分20
6分钟前
6分钟前
Re完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086172
求助须知:如何正确求助?哪些是违规求助? 3625187
关于积分的说明 11497202
捐赠科研通 3338910
什么是DOI,文献DOI怎么找? 1835547
邀请新用户注册赠送积分活动 903909
科研通“疑难数据库(出版商)”最低求助积分说明 822005