Quantifying Floating Litter Fluxes with a Semi-Supervised Learning-Based Framework

环境科学 垃圾箱 计算机科学 生态学 生物
作者
Tianlong Jia,Riccardo Taormina,Rinze de Vries,Zoran Kapelan,Tim van Emmerik,Paul Vriend,Imke Okkerman
标识
DOI:10.5194/egusphere-egu25-12591
摘要

Supervised deep learning methods have been widely employed by researchers and practitioners to detect floating macroplastic litter (plastic items >5 mm) in (fresh)water bodies. However, their potential to quantify litter fluxes in rivers with wide cross-sections remains underexplored. Additionally, supervised learning (SL) models also face practical challenges, including the dependency on extensive labeled data, and low detection performance for small litter items.To overcome these issues, we propose a semi-supervised learning (SSL)-based framework for quantifying cross-sectional floating litter fluxes. This framework includes four steps: (1) developing a robust litter detection model using SSL methods, (2) collecting images of river surfaces from multiple locations along the target river cross-section using cameras, (3) applying the developed model to detect and count litter items in images, and (4) post-processing the detection results to quantify cross-sectional litter fluxes. In the first step, we first pre-trained a Residual Network with 50 layers (ResNet50) on a large amount of unlabeled data (≈500k images) using a self-supervised learning method, Swapping Assignments between multiple Views of the same image (SwAV). Then, we fine-tuned a Faster Region-based Convolutional Neural Network (Faster R-CNN) with the ResNet50 backbone on a limited amount of labeled data (1.1k images with 1.3k annotated litter items). We introduced a Slicing Aided Hyper Inference (SAHI) method to enhance accuracy of Faster R-CNN in detecting small litter.We evaluated the in-domain detection performance of SSL models using images from canals and waterways of the Netherlands, Indonesia and Vietnam. Additionally, we assessed the zero-shot out-of-domain detection performance of SSL models, and litter flux quantification performance of the proposed framework on a case study in the Saigon river in Vietnam (including the Thu Thiem and Binh Loi locations). The assessment of out-of-domain detection performance was conducted with and without SAHI method. We benchmarked our results against the SL methods using the same Faster R-CNN architecture with ImageNet pre-trained weights. The results show that the SSL models significantly outperform baseline benchmarks, with an in-domain F1-score increase of 0.2, and a zero-shot out-of-domain median F1-score increase of 0.14 for Thu Thiem and 0.07 for Binh Loi. The SSL-based framework quantifies litter fluxes nearly twice as high as the baseline SL-based framework, offering estimates that align more closely with human-measured litter fluxes. Furthermore, the SAHI method correctly identifies 54 additional small litter items (with areas below 1,000 cm²) in the case study, compared to the results obtained without the SAHI method.Our findings underscore a promising pathway for developing a robust framework for macroplastic flux measurement by integrating a foundation model, a transformative approach driving the current artificial intelligence revolution across diverse domains. By scaling our proposed framework with larger and more diversified datasets, we can make significant progress in developing advanced monitoring systems to tackle the global challenge of plastic pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗噗完成签到 ,获得积分10
刚刚
温暖南莲发布了新的文献求助10
1秒前
能干宛秋发布了新的文献求助10
1秒前
Tong完成签到,获得积分10
1秒前
h_hellow完成签到,获得积分10
1秒前
科研通AI5应助简单的听寒采纳,获得10
3秒前
3秒前
forge完成签到,获得积分10
3秒前
Elijah完成签到,获得积分10
3秒前
3秒前
冷傲的道罡完成签到,获得积分10
3秒前
senta完成签到,获得积分10
3秒前
紫麒麟发布了新的文献求助10
3秒前
彪壮的梨愁完成签到,获得积分10
3秒前
fang发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
又又完成签到,获得积分10
4秒前
5秒前
旺仔完成签到,获得积分20
5秒前
5秒前
5秒前
wuli发布了新的文献求助10
6秒前
6秒前
JamesPei应助zdq10068采纳,获得10
7秒前
7秒前
stoner发布了新的文献求助10
8秒前
8秒前
Sun_Chen完成签到,获得积分10
8秒前
wanwusheng完成签到 ,获得积分10
8秒前
8秒前
善学以致用应助橙七采纳,获得10
9秒前
科研通AI2S应助小白采纳,获得10
9秒前
9秒前
10秒前
XXJ发布了新的文献求助10
10秒前
敬老院N号发布了新的文献求助30
10秒前
长孙一手发布了新的文献求助10
10秒前
wangx发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798