Image-Based Search in Radiology: Identification of Brain Tumor Subtypes within Databases using MRI-Based Radiomic Features

医学 鉴定(生物学) 无线电技术 放射科 磁共振成像 脑瘤 医学物理学 人工智能 病理 计算机科学 植物 生物
作者
Marc von Reppert,Saahil Chadha,Klara Willms,Arman Avesta,Nazanin Maleki,Tal Zeevi,Jan Lost,Niklas Tillmanns,Leon Jekel,Sara Merkaj,MingDe Lin,Karl‐Titus Hoffmann,Sanjay Aneja,Mariam Aboian
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A8805-ajnr.A8805
标识
DOI:10.3174/ajnr.a8805
摘要

Existing neuroradiology reference materials do not cover the full range of primary brain tumor presentations, and text-based medical image search engines are limited by the lack of consistent structure in radiology reports. To address this, an image-based search approach is introduced here, leveraging an institutional database to find reference MRIs visually similar to presented query cases. 295 patients (mean age and SD, 51 ± 20 years) with primary brain tumors who underwent surgical and/or radiotherapeutic treatment between 2000 and 2021 were included in this retrospective study. Semi-automated convolutional neural network-based tumor segmentation was performed, and radiomic features were extracted. The dataset was split into reference and query subsets, and dimensionality reduction was applied to cluster reference cases. Radiomic features extracted from each query case were projected onto the clustered reference cases, and nearest neighbors were retrieved. Retrieval performance was evaluated using mean average precision at k, and the best-performing dimensionality reduction technique was identified. Expert readers independently rated visual similarity using a five-point Likert scale. t-Distributed Stochastic Neighbor Embedding with six components was the highest-performing dimensionality reduction technique, with mean average precision at 5 ranging from 78% to 100% by tumor type. The top five retrieved reference cases showed high visual similarity Likert scores with corresponding query cases (76% 'similar' or 'very similar'). We introduce an image-based search method for exploring historical MR images of primary brain tumors and fetching reference cases closely resembling queried ones. Assessment involving comparison of tumor types and visual similarity Likert scoring by expert neuroradiologists validates the effectiveness of this method. PCA = Principal Component Analysis; t-SNE = t-Distributed Stochastic Neighbor Embedding; UMAP = Uniform Manifold Approximation and Projection; PHATE = Potential of Heat-Diffusion for Affinity-Based Trajectory Embedding; G/A = Glioblastoma and Astrocytoma CNS World Health Organization Grade 4; A/O = Astrocytoma and Oligodendroglioma CNS World Health Organization Grades 2-3; PA = Pilocytic Astrocytoma; MEN = Meningioma; mAP@k = Mean Average Precision at k; CNN = Convolutional Neural Network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
进击的巨人完成签到 ,获得积分10
1秒前
Akim应助Lucas采纳,获得10
2秒前
2秒前
9202211125发布了新的文献求助30
2秒前
hatoyama完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
chx完成签到,获得积分10
4秒前
ice7完成签到,获得积分10
5秒前
叮咚完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
机智雁凡完成签到,获得积分10
6秒前
6秒前
鄂海菡发布了新的文献求助10
6秒前
6秒前
包包完成签到 ,获得积分10
6秒前
田様应助焦小强采纳,获得10
6秒前
7秒前
魔幻的语雪完成签到,获得积分10
8秒前
逗号先生发布了新的文献求助10
8秒前
chx发布了新的文献求助10
8秒前
小吗发布了新的文献求助10
8秒前
yao完成签到,获得积分10
8秒前
CO2发布了新的文献求助10
8秒前
充电宝应助欢喜海采纳,获得10
9秒前
失眠的水云完成签到,获得积分10
9秒前
9秒前
xxp发布了新的文献求助10
10秒前
10秒前
梦未凉发布了新的文献求助10
11秒前
橘屋顶发布了新的文献求助10
11秒前
小王发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872404
求助须知:如何正确求助?哪些是违规求助? 3414752
关于积分的说明 10690504
捐赠科研通 3139014
什么是DOI,文献DOI怎么找? 1731862
邀请新用户注册赠送积分活动 835056
科研通“疑难数据库(出版商)”最低求助积分说明 781656