严重发热伴血小板减少综合征
中国
医学
免疫学
地理
病毒
考古
作者
Nan Li,Yihong Li,Donglin Cheng,Longwei Li
标识
DOI:10.1089/vbz.2024.0115
摘要
Objective: Severe fever with thrombocytopenia syndrome (SFTS) poses a significant public health concern in China and has the potential for severe morbidity and mortality. Previous studies on SFTS have focused primarily on analyzing its incidence under existing climate conditions, often overlooking the impacts of future climate change on the disease's distribution. Moreover, the key factors influencing SFTS transmission identified in prior research are limited and lack a comprehensive consideration of multiple environmental and socioeconomic factors in specific regions. Methods: In this study, by utilizing SFTS case data from Chuzhou city alongside multisource environmental variables, the maximum entropy ecological niche (MaxEnt) model was employed to identify the key climatic factors influencing the distribution of SFTS. Risk areas were projected for the present and future climate scenarios, including shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585. Results: The results indicate that (1) precipitation in the driest quarter, elevation, and precipitation in the wettest month are the most critical variables; (2) potential risk areas are situated predominantly in the central hilly region, with the total area of medium- and high-risk zones measuring 5731.86 km2, which accounts for 42.67% of the total area; (3) in future climate scenarios, the central-south and southwestern regions emerge as high-risk areas, with the maximum area of future high-risk zones reaching 6417.8398 km2, projected for the 2030s under the SSP585 scenario; and (4) the current epicenter of the SFTS risk area is located in Zhang Baling town (118°12'23″E, 32°28'56″N). Under the SSP126 and SSP370 scenarios, the epicenter exhibits minimal movement, whereas significant shifts occur under the SSP245 and SSP585 scenarios. Conclusion: These findings provide essential insights for formulating scientifically grounded prevention and control strategies against SFTS in Chuzhou city.
科研通智能强力驱动
Strongly Powered by AbleSci AI