CSBNC-PAL: Consistency Semi-supervised Brain Network Classification Framework with Prototypical-Adversarial Learning

计算机科学 对抗制 人工智能 一致性(知识库) 机器学习 自然语言处理 模式识别(心理学)
作者
Junzhong Ji,Gan Liu,Xingyu Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3569734
摘要

In recent years, semi-supervised learning (SSL) for functional brain network (FBN) classification has gained considerable attention due to its potential to leverage large amounts of unlabeled data from multisite. However, existing SSL methods often struggle to address the distributional differences across different sites, which limits their ability to extract discriminative features from the unlabeled data, thus hindering classification performance. To overcome this challenge, we propose a novel consistency semi-supervised FBN classification framework with prototypical-adversarial learning, termed CSBNC-PAL. Specifically, we first design a contrastive consistency module (CCM) that utilizes contrastive learning to more effectively exploit unlabeled data and learn preliminary feature representations. Then, we introduce a prototype alignment module (PAM) that computes site-aware prototypes through weighted feature clustering to guide inter-site feature alignment, and achieve inter-site equilibrium feature representations. Finally, we develop an adversarial alignment module (AAM) that employs site-discriminative adversarial training based on a gradient reversal layer to guide intra-site feature alignment, and learn site-invariant features. The three modules above are optimized collectively in an end-to-end manner, ensuring effective learning from both labeled and unlabeled data while alleviating the distribution differences of multisite data. Experiments on the ABIDE I, ABIDE II, and ADHD-200 datasets demonstrate that the CSBNC-PAL outperforms many state-of-the-art SSL methods in FBN classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝9512完成签到 ,获得积分10
刚刚
田様应助PengHu采纳,获得10
刚刚
刚刚
田様应助XHH1994采纳,获得10
刚刚
共享精神应助司空笑白采纳,获得30
刚刚
科研白发布了新的文献求助10
1秒前
mirayq完成签到,获得积分20
1秒前
1秒前
DYQin发布了新的文献求助10
2秒前
2秒前
李静完成签到,获得积分10
2秒前
科研通AI2S应助牛马采纳,获得10
2秒前
stuart完成签到,获得积分10
3秒前
毛毛球球完成签到,获得积分10
3秒前
lql完成签到,获得积分10
3秒前
赵一丁完成签到,获得积分10
4秒前
4秒前
5秒前
香香完成签到,获得积分20
5秒前
镜花水月完成签到,获得积分10
5秒前
小二郎应助lyh采纳,获得10
5秒前
乐乐应助李可汗采纳,获得10
6秒前
Sunshine完成签到,获得积分10
6秒前
6秒前
GK完成签到,获得积分10
6秒前
web123发布了新的文献求助10
6秒前
7秒前
skf完成签到,获得积分10
7秒前
bkagyin应助战战采纳,获得10
7秒前
齐半青完成签到,获得积分10
8秒前
8秒前
阿斯顿发布了新的文献求助10
8秒前
billevans完成签到,获得积分10
9秒前
XHH1994完成签到,获得积分10
9秒前
张火火发布了新的文献求助20
9秒前
爆米花应助DYQin采纳,获得10
9秒前
mingyahaoa完成签到,获得积分10
9秒前
机灵的白筠完成签到,获得积分20
9秒前
CipherSage应助燕子采纳,获得30
9秒前
Accpted河豚发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769