计算机科学
对抗制
人工智能
一致性(知识库)
机器学习
自然语言处理
模式识别(心理学)
作者
Junzhong Ji,Gan Liu,Xingyu Wang
标识
DOI:10.1109/jbhi.2025.3569734
摘要
In recent years, semi-supervised learning (SSL) for functional brain network (FBN) classification has gained considerable attention due to its potential to leverage large amounts of unlabeled data from multisite. However, existing SSL methods often struggle to address the distributional differences across different sites, which limits their ability to extract discriminative features from the unlabeled data, thus hindering classification performance. To overcome this challenge, we propose a novel consistency semi-supervised FBN classification framework with prototypical-adversarial learning, termed CSBNC-PAL. Specifically, we first design a contrastive consistency module (CCM) that utilizes contrastive learning to more effectively exploit unlabeled data and learn preliminary feature representations. Then, we introduce a prototype alignment module (PAM) that computes site-aware prototypes through weighted feature clustering to guide inter-site feature alignment, and achieve inter-site equilibrium feature representations. Finally, we develop an adversarial alignment module (AAM) that employs site-discriminative adversarial training based on a gradient reversal layer to guide intra-site feature alignment, and learn site-invariant features. The three modules above are optimized collectively in an end-to-end manner, ensuring effective learning from both labeled and unlabeled data while alleviating the distribution differences of multisite data. Experiments on the ABIDE I, ABIDE II, and ADHD-200 datasets demonstrate that the CSBNC-PAL outperforms many state-of-the-art SSL methods in FBN classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI