Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics

疾病 医学 肝病 生物信息学 计算机科学 重症监护医学 机器学习 病理 内科学 生物
作者
Gangfeng Zhu,Yipeng Song,Zenghong Lu,Qiang Yi,Rui Xu,Yi Xie,Shi Geng,Na Yang,Liangjian Zheng,Xiaofei Feng,Rui Zhu,Xiangcai Wang,Li‐Min Huang,Yi Xiang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12967-025-06387-5
摘要

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern that necessitates early screening and timely intervention to improve prognosis. The current diagnostic protocols for MASLD involve complex procedures in specialised medical centres. This study aimed to explore the feasibility of utilising machine learning models to accurately screen for MASLD in large populations based on a combination of essential demographic and clinical characteristics. A total of 10,007 outpatients who underwent transient elastography at the First Affiliated Hospital of Gannan Medical University were enrolled to form a derivation cohort. Using eight demographic and clinical characteristics (age, educational level, height, weight, waist and hip circumference, and history of hypertension and diabetes), we built predictive models for MASLD (classified as none or mild: controlled attenuation parameter (CAP) ≤ 269 dB/m; moderate: 269-296 dB/m; severe: CAP > 296 dB/m) employing 10 machine learning algorithms: logistic regression (LR), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), bootstrap aggregating, decision tree, K-nearest neighbours, light gradient boosting machine, naive Bayes, random forest, and support vector machine. These models were externally validated using the National Health and Nutrition Examination Survey (NHANES) 2017-2023 datasets. In the hospital outpatient cohort, machine learning algorithms demonstrated robust predictive capabilities. Notably, LR achieved the highest accuracy (ACC) of 0.711 in the test cohort and 0.728 in the validation cohort, coupled with robust areas under the receiver operating characteristic curve (AUC) values of 0.798 and 0.806, respectively. Similarly, MLP and XGBoost showed promising results, with MLP achieving an ACC of 0.735 in the test cohort, and XGBoost registering an AUC of 0.798. External validation using the NHANES datasets yielded consistent AUC results, with LR (0.831), MLP (0.823), and XGBoost (0.784) performing robustly. This study demonstrated that machine learning models constructed using a combination of essential demographic and clinical characteristics can accurately screen for MASLD in the general population. This approach significantly enhances the feasibility, accessibility, and compliance of MASLD screening and provides an effective tool for large-scale health assessments and early intervention strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助活泼的觅云采纳,获得10
1秒前
111111222333完成签到,获得积分10
2秒前
我是老大应助cs采纳,获得10
5秒前
米兰达完成签到 ,获得积分0
8秒前
木雨发布了新的文献求助10
9秒前
红白夹心升糖完成签到,获得积分20
10秒前
科研通AI5应助活泼的觅云采纳,获得10
10秒前
whoami完成签到,获得积分10
11秒前
爆米花应助zhx采纳,获得10
15秒前
xulin完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助活泼的觅云采纳,获得10
19秒前
木雨完成签到 ,获得积分10
22秒前
biubiubiu完成签到 ,获得积分10
23秒前
26秒前
舒适的猫咪完成签到,获得积分10
28秒前
科研通AI5应助活泼的觅云采纳,获得10
29秒前
29秒前
论文都见刊完成签到,获得积分10
29秒前
30秒前
30秒前
sgt发布了新的文献求助10
32秒前
zhx发布了新的文献求助10
33秒前
啊啊啊发布了新的文献求助10
35秒前
35秒前
36秒前
37秒前
南北完成签到,获得积分10
40秒前
贾福运发布了新的文献求助10
41秒前
zz完成签到 ,获得积分10
41秒前
YOY关注了科研通微信公众号
41秒前
42秒前
43秒前
邓娇叶完成签到,获得积分10
44秒前
44秒前
WaitP应助ywhys采纳,获得10
46秒前
迷恋发布了新的文献求助10
47秒前
无花果应助活泼的觅云采纳,获得10
48秒前
鲨鱼鱼发布了新的文献求助10
48秒前
活力书包完成签到 ,获得积分10
48秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445