亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CGsmiles: A Versatile Line Notation for Molecular Representations across Multiple Resolutions

符号 直线(几何图形) 计算机科学 程序设计语言 算术 数学 几何学
作者
Fabian Grünewald,Leif Seute,Riccardo Alessandri,Melanie König,P. Kroon
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00064
摘要

Coarse-grained (CG) models simplify molecular representations by grouping multiple atoms into effective particles, enabling faster simulations and reducing the chemical compound space compared to atomistic methods. Additionally, models with chemical specificity, such as Martini, may extrapolate to cases where experimental data is scarce, making CG methods highly promising for high-throughput (HT) screenings and chemical space exploration. Yet no rigorous data formats exist for the crucial aspect of describing how the atoms are grouped (i.e., the mapping). As CG models advance toward true HT capabilities, the lack of mappings and indexing capabilities for the growing number of CG molecules poses a significant barrier. To address this, we introduce CGsmiles, a versatile line notation inspired by the popular Simplified Molecular Input Line Entry System (SMILES) and BigSMILES. CGsmiles encodes the molecular graph and particle (atom) properties independent of their resolution and incorporates a framework that allows seamless conversion between coarse- and fine-grained resolutions. By specifying fragments that describe how each particle is represented at the next finer resolution (e.g., CG particles to atoms), CGsmiles can represent multiple resolutions and their hierarchical relationships in a single string. In this paper, we present the CGSmiles syntax and analyze a benchmark set of 407 molecules from the Martini force field. We highlight key features missing in existing notations that are essential for accurately describing CG models. To demonstrate the utility of CGsmiles beyond simulations, we construct two simple machine-learning models for predicting partition coefficients, both trained on CGsmiles-indexed data and leveraging information from both CG and atomistic resolutions. Finally, we briefly discuss the applicability of CGsmiles to polymers, which particularly benefit from the multiresolution nature of the notation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空发布了新的文献求助30
1秒前
2秒前
Jj7完成签到,获得积分10
4秒前
46秒前
Ni发布了新的文献求助10
49秒前
HoO发布了新的文献求助10
51秒前
星空完成签到,获得积分10
1分钟前
香蕉觅云应助欣欣采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
欣欣发布了新的文献求助10
1分钟前
WK完成签到,获得积分10
1分钟前
2分钟前
2分钟前
追寻青柏发布了新的文献求助10
2分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
嘉嘉完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
从容芮完成签到,获得积分0
3分钟前
3分钟前
林非鹿完成签到 ,获得积分10
4分钟前
caca完成签到,获得积分0
4分钟前
4分钟前
章鱼完成签到,获得积分10
4分钟前
春天的粥完成签到 ,获得积分10
4分钟前
4分钟前
和谐的烙发布了新的文献求助30
4分钟前
追寻青柏发布了新的文献求助10
4分钟前
4分钟前
KYT完成签到 ,获得积分10
4分钟前
英姑应助从容小蘑菇采纳,获得10
4分钟前
和谐的烙完成签到,获得积分20
4分钟前
倾卿如玉完成签到 ,获得积分10
4分钟前
nvatk16完成签到,获得积分20
5分钟前
5分钟前
5分钟前
5分钟前
时尚的傲旋完成签到 ,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333659
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673595
邀请新用户注册赠送积分活动 802070
科研通“疑难数据库(出版商)”最低求助积分说明 760504