Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial

心房颤动 医学 窦性心律 内科学 正常窦性心律 随机对照试验 心脏病学 节奏 心电图
作者
Peter A. Noseworthy,Zachi I. Attia,Emma Behnken,Rachel Giblon,Katherine A. Bews,Sijia Liu,Tara Gosse,Zachery D Linn,Yihong Deng,Jun Yin,Bernard J. Gersh,Jonathan Graff‐Radford,Alejandro A. Rabinstein,Konstantinos C. Siontis,Paul A. Friedman,Xiaoxi Yao
出处
期刊:The Lancet [Elsevier]
卷期号:400 (10359): 1206-1212 被引量:189
标识
DOI:10.1016/s0140-6736(22)01637-3
摘要

Summary

Background

Previous atrial fibrillation screening trials have highlighted the need for more targeted approaches. We did a pragmatic study to evaluate the effectiveness of an artificial intelligence (AI) algorithm-guided targeted screening approach for identifying previously unrecognised atrial fibrillation.

Methods

For this non-randomised interventional trial, we prospectively recruited patients with stroke risk factors but with no known atrial fibrillation who had an electrocardiogram (ECG) done in routine practice. Participants wore a continuous ambulatory heart rhythm monitor for up to 30 days, with the data transmitted in near real time through a cellular connection. The AI algorithm was applied to the ECGs to divide patients into high-risk or low-risk groups. The primary outcome was newly diagnosed atrial fibrillation. In a secondary analysis, trial participants were propensity-score matched (1:1) to individuals from the eligible but unenrolled population who served as real-world controls. This study is registered with ClinicalTrials.gov, NCT04208971.

Findings

1003 patients with a mean age of 74 years (SD 8·8) from 40 US states completed the study. Over a mean 22·3 days of continuous monitoring, atrial fibrillation was detected in six (1·6%) of 370 patients with low risk and 48 (7·6%) of 633 with high risk (odds ratio 4·98, 95% CI 2·11–11·75, p=0·0002). Compared with usual care, AI-guided screening was associated with increased detection of atrial fibrillation (high-risk group: 3·6% [95% CI 2·3–5·4] with usual care vs 10·6% [8·3–13·2] with AI-guided screening, p<0·0001; low-risk group: 0·9% vs 2·4%, p=0·12) over a median follow-up of 9·9 months (IQR 7·1–11·0).

Interpretation

An AI-guided targeted screening approach that leverages existing clinical data increased the yield for atrial fibrillation detection and could improve the effectiveness of atrial fibrillation screening.

Funding

Mayo Clinic Robert D and Patricia E Kern Center for the Science of Health Care Delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助L563采纳,获得10
刚刚
刚刚
Jasper应助Stellarshi517采纳,获得10
1秒前
轻松雁蓉发布了新的文献求助10
1秒前
1秒前
1秒前
OhXCY发布了新的文献求助10
3秒前
ding完成签到,获得积分10
4秒前
完美世界应助路人乙采纳,获得10
4秒前
夜雨潇潇发布了新的文献求助10
4秒前
5秒前
慕青应助bhl采纳,获得10
5秒前
哈喽哈喽发布了新的文献求助10
5秒前
6秒前
6秒前
粗心的蜜蜂完成签到,获得积分10
6秒前
orixero应助阿里昂采纳,获得10
7秒前
糖炒小白云完成签到,获得积分10
7秒前
卿落完成签到,获得积分10
8秒前
8秒前
月色长眠完成签到,获得积分10
8秒前
Bismarck发布了新的文献求助10
8秒前
酷酷的小钟完成签到,获得积分10
9秒前
haha111发布了新的文献求助10
9秒前
SFFFF完成签到 ,获得积分10
9秒前
yaya发布了新的文献求助10
10秒前
初小花完成签到,获得积分10
10秒前
林林林一发布了新的文献求助10
11秒前
脑洞疼应助薯条采纳,获得10
11秒前
xiaochong发布了新的文献求助10
11秒前
11秒前
小颉江二郎完成签到,获得积分10
12秒前
科研通AI2S应助体贴的无色采纳,获得10
12秒前
火山书痴完成签到 ,获得积分10
13秒前
apckkk完成签到 ,获得积分10
13秒前
善学以致用应助结实万恶采纳,获得10
13秒前
完美世界应助能干的以寒采纳,获得10
14秒前
李冰完成签到,获得积分10
14秒前
总遇春发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5596704
求助须知:如何正确求助?哪些是违规求助? 4682114
关于积分的说明 14824365
捐赠科研通 4658286
什么是DOI,文献DOI怎么找? 2536205
邀请新用户注册赠送积分活动 1503905
关于科研通互助平台的介绍 1470014