Predicting Peptide HLA-II Presentation Using Immunopeptidomics, Transcriptomics and Deep Multimodal Learning

人类白细胞抗原 抗原呈递 免疫原性 计算生物学 计算机科学 转录组 生物 免疫系统 免疫学 抗原 T细胞 基因 生物化学 基因表达
作者
Hesham ElAbd,Mareike Wendorff,Tomas Koudelka,Christian Hentschker,Ann-Kristin Kamps,Christoph Prieß,Lars Wienbrandt,Frauke Degenhardt,Tim A. Steiert,Petra Bacher,P. M. Mathur,David Ellinghaus,Uwe Völker,Andreas Tholey,Tobias L. Lenz,Andre Franke
标识
DOI:10.1101/2022.09.20.508681
摘要

ABSTRACT The human leukocyte antigen (HLA) class II proteins present peptides to CD4 + T cells through an interaction with T cell receptors (TCRs). Thus, HLA proteins are key players in shaping immunogenicity and immunodominance. Nevertheless, factors governing peptide presentation by HLA-II proteins are still poorly understood. To address this problem, we profiled the blood transcriptome and immunopeptidome of 20 healthy individuals and integrated the profiles with publicly available immunopeptidomics datasets. In depth multi-omics analysis identified expression levels and subcellular locations as import sequence-independent features governing presentation. Levering this knowledge, we developed the Peptide Immune Annotator Multimodal ( PIA-M ) tool, as a novel pan multimodal transformer-based framework that utilises sequence-dependent along with sequence-independent features to model presentation by HLA-II proteins. PIA-M illustrated a consistently superior performance relative to existing tools across two independent test datasets (area under the curve: 0.93 vs. 0.84 and 0.95 vs. 0.86), respectively. Besides achieving a higher predictive accuracy, PIA-M with its Rust-based pre-processing engine, had significantly shorter runtimes. PIA-M is freely available with a permissive licence as a standalone pipeline and as a webserver ( https://hybridcomputing.ikmb.uni-kiel.de/pia ). In conclusion, PIA-M enables a new state-of-the-art accuracy in predicting peptide presentation by HLA-II proteins in vivo .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助小罗采纳,获得10
2秒前
2秒前
12发布了新的文献求助20
3秒前
科研通AI5应助邢慧兰采纳,获得10
4秒前
科研通AI5应助鱼鱼鱼采纳,获得10
4秒前
天空发布了新的文献求助10
5秒前
5秒前
李健的小迷弟应助balko采纳,获得10
5秒前
可爱的函函应助cherish采纳,获得10
6秒前
科研通AI5应助宋岩采纳,获得10
8秒前
9秒前
11秒前
燃之一手完成签到 ,获得积分10
12秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
13秒前
13秒前
14秒前
juwish完成签到,获得积分10
14秒前
15秒前
汉堡包应助123采纳,获得30
18秒前
18秒前
19秒前
19秒前
19秒前
烟花应助飞羽采纳,获得10
19秒前
哎咿呀哎呀完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
星辰大海应助jimmy采纳,获得10
22秒前
NexusExplorer应助呜呼啦呼采纳,获得10
23秒前
cherish发布了新的文献求助10
24秒前
乐乐应助傻傻的听安采纳,获得10
25秒前
25秒前
25秒前
25秒前
煎饼狗子发布了新的文献求助10
26秒前
桐桐应助人不犯二枉少年采纳,获得10
26秒前
26秒前
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806902
求助须知:如何正确求助?哪些是违规求助? 3351674
关于积分的说明 10355196
捐赠科研通 3067522
什么是DOI,文献DOI怎么找? 1684579
邀请新用户注册赠送积分活动 809860
科研通“疑难数据库(出版商)”最低求助积分说明 765635