清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimization of College Music Teaching Mode Based on Embedded Neural Network

步伐 计算机科学 质量(理念) 理性 升级 音乐技术 钥匙(锁) 人工神经网络 空格(标点符号) 模式(计算机接口) 多媒体 音乐教育 人工智能 人机交互 教育学 心理学 认识论 操作系统 哲学 法学 计算机安全 地理 政治学 大地测量学
作者
Ping Lin
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401123
摘要

The traditional teaching mode is difficult to fully meet the diversity of modern music education. This paper focuses on exploring new paths to optimize university music teaching models using advanced data algorithm technologies such as embedded neural networks. This exploration is not only an innovation of traditional teaching models, but also a key practice to promote students’ comprehensive development, enhance their overall quality, and stimulate innovative thinking. This paper deeply analyzes the urgency and importance of optimizing the music teaching mode in universities, and points out that in the rapidly changing digital age, music education must keep pace with the times to achieve a comprehensive upgrade of teaching content, methods, and evaluation system through technological means, in order to meet the diverse and high-quality demands of society for music talents. These technological advancements not only provide strong support for the integration of teaching resources and the design of personalized learning paths, but also open up vast space for the implementation of innovative teaching models. This paper introduces a new concept of spectral regression rationality. This concept aims to conduct in-depth analysis of music works through embedded neural networks to ensure the accuracy of music expression. At the same time, guide students to master scientific data analysis methods and cultivate their rational thinking and aesthetic abilities in music creation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
哈哈完成签到,获得积分10
21秒前
情怀应助哈哈采纳,获得10
27秒前
充电宝应助李李李采纳,获得10
30秒前
31秒前
了晨完成签到 ,获得积分10
1分钟前
1分钟前
852应助halide采纳,获得10
1分钟前
今后应助嘻嘻哈哈采纳,获得10
1分钟前
1分钟前
halide发布了新的文献求助10
2分钟前
2分钟前
2分钟前
李李李发布了新的文献求助10
2分钟前
嘻嘻哈哈发布了新的文献求助10
2分钟前
halide完成签到,获得积分10
2分钟前
英姑应助嘻嘻哈哈采纳,获得10
2分钟前
顾矜应助李李李采纳,获得30
2分钟前
2分钟前
2分钟前
番茄炒蛋发布了新的文献求助10
2分钟前
juliar发布了新的文献求助10
2分钟前
GMEd1son完成签到,获得积分10
2分钟前
萨尔莫斯完成签到,获得积分10
2分钟前
番茄炒蛋完成签到,获得积分10
3分钟前
3分钟前
哈哈发布了新的文献求助10
3分钟前
3分钟前
李李李发布了新的文献求助30
3分钟前
imi完成签到 ,获得积分10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
共享精神应助李李李采纳,获得30
3分钟前
11完成签到 ,获得积分10
3分钟前
4分钟前
李李李发布了新的文献求助30
4分钟前
黑猫老师完成签到 ,获得积分10
4分钟前
4分钟前
ahh完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Benhnhk21完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5795960
求助须知:如何正确求助?哪些是违规求助? 5769957
关于积分的说明 15491153
捐赠科研通 4922859
什么是DOI,文献DOI怎么找? 2650122
邀请新用户注册赠送积分活动 1597351
关于科研通互助平台的介绍 1551920