Cross-modality transformations in biological microscopy enabled by deep learning

模态(人机交互) 显微镜 人工智能 计算机科学 医学 病理
作者
D.O. Hassan,Jesús Domínguez,Benjamin Midtvedt,Henrik Klein Moberg,Jesús Pineda,Christoph Langhammer,Giovanni Volpe,Antoni Homs‐Corbera,Caroline B. Adiels
出处
期刊:Advanced photonics [SPIE - International Society for Optical Engineering]
卷期号:6 (06)
标识
DOI:10.1117/1.ap.6.6.064001
摘要

Recent advancements in deep learning (DL) have propelled the virtual transformation of microscopy images across optical modalities, enabling unprecedented multimodal imaging analysis hitherto impossible. Despite these strides, the integration of such algorithms into scientists' daily routines and clinical trials remains limited, largely due to a lack of recognition within their respective fields and the plethora of available transformation methods. To address this, we present a structured overview of cross-modality transformations, encompassing applications, data sets, and implementations, aimed at unifying this evolving field. Our review focuses on DL solutions for two key applications: contrast enhancement of targeted features within images and resolution enhancements. We recognize cross-modality transformations as a valuable resource for biologists seeking a deeper understanding of the field, as well as for technology developers aiming to better grasp sample limitations and potential applications. Notably, they enable high-contrast, high-specificity imaging akin to fluorescence microscopy without the need for laborious, costly, and disruptive physical-staining procedures. In addition, they facilitate the realization of imaging with properties that would typically require costly or complex physical modifications, such as achieving superresolution capabilities. By consolidating the current state of research in this review, we aim to catalyze further investigation and development, ultimately bringing the potential of cross-modality transformations into the hands of researchers and clinicians alike.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yusi应助可可采纳,获得10
刚刚
隐形曼青应助花花采纳,获得10
刚刚
最蠢的讨厌鬼完成签到,获得积分10
刚刚
刚刚
林克发布了新的文献求助10
刚刚
Zhanghh87应助虚拟的惜筠采纳,获得10
刚刚
1秒前
妮妮完成签到,获得积分20
1秒前
fisher完成签到 ,获得积分10
1秒前
weiweiwudio完成签到,获得积分10
2秒前
3秒前
Wellbeing完成签到,获得积分10
4秒前
快乐小狗完成签到 ,获得积分10
4秒前
我是老大应助小K采纳,获得10
5秒前
阿辉发布了新的文献求助10
5秒前
大模型应助无奈的萝采纳,获得10
5秒前
妮妮发布了新的文献求助10
5秒前
lemon发布了新的文献求助10
7秒前
7秒前
失眠的剑发布了新的文献求助10
7秒前
子卿应助zzlark采纳,获得20
8秒前
英姑应助WSGQT采纳,获得10
8秒前
木木完成签到 ,获得积分20
8秒前
8秒前
LYSM应助涵de暴躁小地雷采纳,获得10
8秒前
haha完成签到 ,获得积分10
9秒前
10秒前
樱桃小贩完成签到,获得积分10
10秒前
orixero应助自觉秋凌采纳,获得10
11秒前
淡淡夕阳发布了新的文献求助10
11秒前
12秒前
万能图书馆应助空格TNT采纳,获得10
12秒前
13秒前
13秒前
单薄紫菜发布了新的文献求助10
13秒前
14秒前
vivianxy发布了新的文献求助10
15秒前
阿辉完成签到,获得积分10
15秒前
narzy完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Research on AGV task assignment and path planning in robotic mobile fulfilment systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3936118
求助须知:如何正确求助?哪些是违规求助? 3481685
关于积分的说明 11015530
捐赠科研通 3211731
什么是DOI,文献DOI怎么找? 1775055
邀请新用户注册赠送积分活动 861404
科研通“疑难数据库(出版商)”最低求助积分说明 798051