已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hierarchical Graph-Enhanced Transformer Network for Remote Sensing Scene Classification

计算机科学 变压器 人工智能 模式识别(心理学) 遥感 计算机视觉 地质学 电压 工程类 电气工程
作者
Ziwei Li,Weiming Xu,Shiyu Yang,Juan Wang,Hua Su,Zhanchao Huang,Sheng Wu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 20315-20330 被引量:3
标识
DOI:10.1109/jstars.2024.3491335
摘要

Remote sensing scene classification (RSSC) is essential in Earth observation, with applications in land use, environmental status, urban development, and disaster risk assessment. However, redundant background interference, varying feature scales, and high interclass similarity in remote sensing images present significant challenges for RSSC. To address these challenges, this article proposes a novel hierarchical graph-enhanced transformer network (HGTNet) for RSSC. Initially, we introduce a dual attention (DA) module, which extracts key feature information from both the channel and spatial domains, effectively suppressing background noise. Subsequently, we meticulously design a three-stage hierarchical transformer extractor, incorporating a DA module at the bottleneck of each stage to facilitate information exchange between different stages, in conjunction with the Swin transformer block to capture multiscale global visual information. Moreover, we develop a fine-grained graph neural network extractor that constructs the spatial topological relationships of pixel-level scene images, thereby aiding in the discrimination of similar complex scene categories. Finally, the visual features and spatial structural features are fully integrated and input into the classifier by employing skip connections. HGTNet achieves classification accuracies of 98.47%, 95.75%, and 96.33% on the aerial image, NWPU-RESISC45, and OPTIMAL-31 datasets, respectively, demonstrating superior performance compared to other state-of-the-art models. Extensive experimental results indicate that our proposed method effectively learns critical multiscale visual features and distinguishes between similar complex scenes, thereby significantly enhancing the accuracy of RSSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
komorebi发布了新的文献求助10
1秒前
2秒前
久9完成签到 ,获得积分10
2秒前
4秒前
5秒前
Perry应助熊猫采纳,获得30
5秒前
Duuuuu发布了新的文献求助10
6秒前
goodltl完成签到 ,获得积分10
8秒前
0514gr完成签到,获得积分10
9秒前
komorebi完成签到,获得积分10
9秒前
9秒前
852应助北林下采纳,获得10
10秒前
10秒前
Self-made发布了新的文献求助10
10秒前
dsjlove完成签到,获得积分10
12秒前
我还是做条鱼吧完成签到,获得积分10
12秒前
WZH发布了新的文献求助10
14秒前
仁爱的狗发布了新的文献求助10
16秒前
侯梦发布了新的文献求助30
17秒前
17秒前
明亮的代灵完成签到 ,获得积分10
17秒前
sss完成签到,获得积分10
19秒前
雨城完成签到 ,获得积分10
20秒前
vv完成签到 ,获得积分10
21秒前
cc0514gr完成签到,获得积分10
21秒前
Philip发布了新的文献求助10
21秒前
TwentyNine完成签到,获得积分10
22秒前
honia完成签到,获得积分10
25秒前
木由发布了新的文献求助10
26秒前
JamesPei应助Philip采纳,获得10
27秒前
29秒前
31秒前
Accelerator完成签到,获得积分10
33秒前
搜集达人应助WZH采纳,获得10
33秒前
youngyang完成签到 ,获得积分10
33秒前
hush发布了新的文献求助10
34秒前
沐风完成签到,获得积分20
36秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144