Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma

鼻咽癌 免疫系统 基因表达 内科学 医学 基因 恶性肿瘤 生物信息学 癌症研究 计算生物学 生物 免疫学 遗传学 放射治疗
作者
Changlin Liu,Chuping Ni,Chao Li,Tian Hu,W. W. Jian,Yuping Zhong,Yanqing Zhou,Xiaoming Lyu,Yuanbin Zhang,Xiaojun Xiang,Chao Cheng,Xin Li
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12967-024-05935-9
摘要

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high rates of morbidity and mortality, largely because of its late diagnosis and metastatic potential. Lactate metabolism and protein lactylation are thought to play roles in NPC pathogenesis by modulating the tumor microenvironment and immune evasion. However, research specifically linking lactate-related mechanisms to NPC remains limited. This study aimed to identify lactate-associated biomarkers in NPC and explore their underlying mechanisms, with a particular focus on immune modulation and tumor progression. To achieve these objectives, we utilized a bioinformatics approach in which publicly available gene expression datasets related to NPC were analysed. Differential expression analysis revealed differentially expressed genes (DEGs) between NPC and normal tissues. We performed weighted gene coexpression network analysis (WGCNA) to identify module genes significantly associated with NPC. Overlaps among DEGs, key module genes and lactate-related genes (LRGs) were analysed to derive lactate-related differentially expressed genes (LR-DEGs). Machine learning algorithms can be used to predict potential biomarkers, and immune infiltration analysis can be used to examine the relationships between identified biomarkers and immune cell types, particularly M0 macrophages and B cells. A total of 1,058 DEGs were identified between the NPC and normal tissue groups. From this set, 372 key module genes associated with NPC were isolated. By intersecting the DEGs, key module genes and lactate-related genes (LRGs), 17 lactate-related DEGs (LR-DEGs) were identified. Using three machine learning algorithms, this list was further refined, resulting in three primary lactate-related biomarkers: TPPP3, MUC4 and CLIC6. These biomarkers were significantly enriched in pathways related to "immune cell activation" and the "extracellular matrix environment". Additionally, M0 and B macrophages were found to be closely associated with these biomarkers, suggesting their involvement in shaping the NPC immune microenvironment. In summary, this study identified TPPP3, MUC4 and CLIC6 as lactate-associated clinical modelling indicators linked to NPC, providing a foundation for advancing diagnostic and therapeutic strategies for this malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
木青仙子完成签到,获得积分10
2秒前
文无发布了新的文献求助20
3秒前
5秒前
雍飞烟发布了新的文献求助10
5秒前
喜悦冰颜发布了新的文献求助30
5秒前
zjj发布了新的文献求助10
6秒前
gy1991发布了新的文献求助10
6秒前
7秒前
huaixi完成签到,获得积分10
7秒前
7秒前
完美的念梦完成签到,获得积分10
7秒前
雪满头应助WGQ采纳,获得10
7秒前
tovyhi完成签到,获得积分10
8秒前
jy发布了新的文献求助10
8秒前
张莹发布了新的文献求助10
8秒前
9秒前
饕餮完成签到,获得积分10
11秒前
WWW发布了新的文献求助10
11秒前
田様应助堵门洞采纳,获得10
11秒前
yeluoyezhi完成签到,获得积分10
12秒前
DIDIDI发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
Quincy发布了新的文献求助10
14秒前
15秒前
如意的汽车完成签到,获得积分10
15秒前
Wangyn发布了新的文献求助10
16秒前
17秒前
JXL发布了新的文献求助10
17秒前
znn发布了新的文献求助10
17秒前
liyudan发布了新的文献求助30
18秒前
二东完成签到,获得积分10
18秒前
十一玮发布了新的文献求助10
18秒前
灰烬完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703854
求助须知:如何正确求助?哪些是违规求助? 4071125
关于积分的说明 12588699
捐赠科研通 3771729
什么是DOI,文献DOI怎么找? 2083322
邀请新用户注册赠送积分活动 1110535
科研通“疑难数据库(出版商)”最低求助积分说明 988364