Spatiotemporal Estimation and Analysis of PM2.5 Concentrations in Wuhan Utilizing Multisource Remote Sensing Data and NOx as Inputs for Machine Learning Models

氮氧化物 数据建模 计算机科学 遥感 估计 环境科学 人工智能 工程类 地理 燃烧 系统工程 化学 数据库 有机化学
作者
Jin‐Wen Song,Xia Hong,Kaiping Yu,Baoyin He,S. S. C. Wu,Ke Hu,Junrui Zhou,Dechen Zhan,Feng Qi,Yadong Zhou,Tao Li,Fan Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jsen.2024.3523046
摘要

Atmospheric fine particulate matter (PM 2.5 ) poses significant risks to both environmental and human health, highlighting the need for regional estimations and spatiotemporal analyses. While most studies have focused on large-scale areas, such as global or national levels, fewer studies addressed PM 2.5 at the urban level. This study analyzed PM 2.5 monitoring data from ground stations in Wuhan, collected between July 2018 and July 2023, integrating 1 km Aerosol Optical Depth (AOD) products, Sentinel-5 NO 2 column concentration data, nighttime light remote sensing, and ERA5 reanalysis meteorological data. Key innovations included selecting NO 2 column concentration data, as NO X primarily exists as NO 2 , and using novel Sentinel-5P measurements rarely explored in related research. Three PM 2.5 estimation models were developed: multiple linear regression (MLR), extreme gradient boosting (XGBoost), and random forest (RF). Evaluation results showed that all models achieved Pearson correlation coefficients (r) above 0.8, with the segmented RF-XGBoost model performing best, reaching an average relative error of 10.38%. Using this optimal model, monthly spatiotemporal maps of PM 2.5 concentrations in Wuhan were generated. Key findings include: (1) Seasonal PM 2.5 levels in Wuhan were lower in summer and higher in winter. (2) Significant regional disparities in PM 2.5 levels were observed, with persistently high pollution in areas such as Qing Shan. (3) Significant changes in PM 2.5 levels before and after the COVID-19 pandemic, characterized by an overall decrease in concentrations from 2019 to 2020, followed by gradual increases in certain districts post-lockdown. This study provides valuable insights for urban-level PM 2.5 estimation, supporting effective pollution control strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sunny完成签到,获得积分10
刚刚
刚刚
青雉发布了新的文献求助30
刚刚
1秒前
1秒前
单薄芷容发布了新的文献求助10
1秒前
1秒前
1秒前
柔弱云朵应助聿潇采纳,获得10
1秒前
文献求助人完成签到,获得积分10
1秒前
1秒前
2秒前
Raymond应助awoe采纳,获得10
2秒前
Zhai发布了新的文献求助10
2秒前
2秒前
2秒前
跳跃安波发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
朱大帅发布了新的文献求助10
2秒前
AgAin发布了新的文献求助10
2秒前
3秒前
嘻嘻完成签到,获得积分10
3秒前
张清璇完成签到,获得积分10
4秒前
Nancy完成签到,获得积分10
4秒前
小胡完成签到 ,获得积分10
4秒前
33ovo完成签到 ,获得积分10
4秒前
4秒前
5秒前
dada完成签到,获得积分10
5秒前
5秒前
正直夜安完成签到 ,获得积分10
5秒前
黄紫茵发布了新的文献求助30
5秒前
5秒前
yolo发布了新的文献求助10
5秒前
夏夏发布了新的文献求助10
5秒前
搜集达人应助suiyi采纳,获得10
5秒前
5秒前
曾无忧发布了新的文献求助10
6秒前
端庄向雁发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928278
求助须知:如何正确求助?哪些是违规求助? 4197425
关于积分的说明 13038287
捐赠科研通 3970322
什么是DOI,文献DOI怎么找? 2175720
邀请新用户注册赠送积分活动 1192848
关于科研通互助平台的介绍 1103624