Hard Sample Meta-Learning for CIR NLOS Identification in UWB Positioning

非视线传播 计算机科学 鉴定(生物学) 样品(材料) 人工智能 无线 电信 化学 植物 色谱法 生物
作者
Yinong Liu,Haonan Si,Gordon Owusu Boateng,Xiansheng Guo,Yu Cao,Bocheng Qian,Nirwan Ansari
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2025.3525722
摘要

Non-line-of-sight (NLOS) identification is the key technique to improve the accuracy of the channel impulse response (CIR) based ultrawideband (UWB) positioning system. However, most existing NLOS identification approaches are tailored to static environments and often encounter difficulties in dynamic settings with both temporal and spatial variations, particularly when dealing with limited and hard samples. This paper introduces a hard sample meta-learning (HSML) approach to address the issues of NLOS identification across different scenarios and domains. HSML includes two phases: a hard sample meta-training phase and a fine-grained meta-testing phase. During the meta-training phase, we train a two-loop learning network using CIR from multiple scenarios (tasks). The inner loop focuses on learning task-specific features, while the outer loop captures cross-task generalization properties using a cross-entropy loss. Hard samples are identified based on estimated residuals for each task, and a new dataset is created, consisting of both hard samples and samples with small residuals. To improve the robustness against hard samples, we implement a residual-corrected focal loss, which is used to retrain the network on this new dataset. In the fine-grained meta-testing phase, we apply a filtering mechanism based on the tendency of estimated residuals during fine-tuning. This mitigates the risk of poor performance caused by anomalous samples. We validate the effectiveness and robustness of the proposed HSML method using two datasets containing multiple real-world scenarios. Our experimental results demonstrate that HSML outperforms existing models in terms of identification accuracy, robustness and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马敏发布了新的文献求助10
1秒前
2秒前
直率的画笔完成签到,获得积分10
3秒前
3秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
1351567822应助科研通管家采纳,获得30
4秒前
英姑应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
鸣笛应助syvshc采纳,获得30
4秒前
yar应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
MR_MA应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
所所应助刘wt采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助刘wt采纳,获得10
5秒前
眯眯眼的黎昕完成签到 ,获得积分10
8秒前
马敏完成签到,获得积分10
9秒前
寇寇完成签到,获得积分10
10秒前
共享精神应助王晰贺采纳,获得10
10秒前
胡萝卜icc发布了新的文献求助10
11秒前
脑洞疼应助caisongliang采纳,获得10
11秒前
12秒前
15秒前
kplus发布了新的文献求助10
15秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899758
求助须知:如何正确求助?哪些是违规求助? 3444367
关于积分的说明 10834793
捐赠科研通 3169337
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789206