Sub-aperture stitching strategy for dark-field imaging of large fine optical components

图像拼接 光学 光圈(计算机存储器) 摄影术 领域(数学) 暗场显微术 物理 衍射 显微镜 声学 数学 纯数学
作者
Shiling wang,L. J. Zhao,Ming Kong,Yubo Liu,Shiwei Guo,Jing Yu,Dong Liu
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:64 (8): 1791-1791
标识
DOI:10.1364/ao.552067
摘要

Scratches, digs, and other defects play an important role in the quality control of fine large-aperture optical components. Dark-field microscopic imaging has become one of the most common methods for surface defect detection. Nevertheless, compared to the significant increase in the aperture of the test component, the imaging field of view is still very limited. Therefore, the sub-aperture stitching strategy can expand the detection range dynamically without reducing the resolution in the detection of large optical components. Sub-aperture images usually are matched at adjacent positions by feature matching. Nevertheless, there may exist contradictions in the feature matching of overlapping areas. Also, some sub-aperture images only have defects in nonoverlapping areas, which cannot be solved by feature matching, resulting in inaccurate defect localization. In this paper, a linear constraint sub-aperture (LCSA) stitching strategy is proposed. The results of feature matching are converted into the linear constraints of all step errors on the scanning path, and the optimal solution of the step errors is obtained through least-square optimization. As a result, high-precision global stitching can be realized by correcting the step errors. In addition, the mean square error (MSE) based on the feature matching results is proposed to evaluate the stitching results. Experimental results demonstrate that this strategy can reduce the MSE to 3.4%–13.6% of the direct stitching and has strong robustness under different experimental conditions. Herein, the quantitative matching results as feature-level information are employed for global optimization, which makes up for the lack of local defect localization accuracy of the feature matching algorithm. It also helps mitigate the limitations of a few matching features and can improve the overall reliability for defect detection of large fine optical components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷毛发布了新的文献求助10
刚刚
田様应助暗夜飛采纳,获得10
1秒前
量子星尘发布了新的文献求助30
2秒前
3秒前
龙虾发票完成签到,获得积分10
4秒前
王二狗完成签到 ,获得积分10
4秒前
5秒前
勤恳的不二完成签到,获得积分10
5秒前
wanci应助Tom47采纳,获得10
6秒前
Tmh完成签到,获得积分10
6秒前
xxx发布了新的文献求助10
8秒前
8秒前
义气静丹发布了新的文献求助30
9秒前
10秒前
辰枫完成签到 ,获得积分10
12秒前
苹果冰旋完成签到,获得积分10
12秒前
12秒前
卷毛完成签到,获得积分10
12秒前
傻傻的寻琴完成签到,获得积分10
13秒前
wenxin发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
16秒前
Lucas应助欢呼的过客采纳,获得10
18秒前
香蕉觅云应助mark采纳,获得10
18秒前
18秒前
吐丝麵包完成签到,获得积分10
19秒前
丘比特应助zakarya采纳,获得10
19秒前
Tom47发布了新的文献求助10
19秒前
jeonghan发布了新的文献求助10
21秒前
21秒前
吕小软发布了新的文献求助10
22秒前
爆米花应助吐丝麵包采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
英姑应助小薏米采纳,获得10
24秒前
24秒前
刘十六发布了新的文献求助10
24秒前
hzr完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4698859
求助须知:如何正确求助?哪些是违规求助? 4067890
关于积分的说明 12576735
捐赠科研通 3767592
什么是DOI,文献DOI怎么找? 2080685
邀请新用户注册赠送积分活动 1108631
科研通“疑难数据库(出版商)”最低求助积分说明 986926