Toward Production Forecasting for Shale Gas Wells Using Transfer Learning

学习迁移 人工神经网络 提取器 页岩气 储层建模 计算机科学 传递函数 人工智能 油页岩 生产(经济) 非常规油 深度学习 偏移量(计算机科学) 特征(语言学) 石油工程 机器学习 地质学 工艺工程 工程类 古生物学 宏观经济学 经济 哲学 程序设计语言 电气工程 语言学
作者
Wente Niu,Yuping Sun,Xuefeng Yang,Jialiang Lu,Shengxian Zhao,Rongze Yu,Pingping Liang,Jianzhong Zhang
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (7): 5130-5142 被引量:9
标识
DOI:10.1021/acs.energyfuels.3c00234
摘要

Accurate prediction of shale gas well production and estimated ultimate recovery (EUR) is always a difficult and hot spot in shale gas development. In particular, the production and EUR prediction of shale gas wells in new production blocks are faced with the lack of field gas well data and the difficulty of model development. In view of the above problems, this study proposes a new deep transfer learning strategy, which uses transfer component analysis (TCA) and deep neural network (DNN) to achieve shale gas well production and EUR prediction across formations/blocks. The feature extractor based on TCA can narrow the input feature distribution of the source and the target domains. The neural network model can be used to establish a domain-adaptive transfer learning model without the prediction performance degradation caused by distribution offset. Validity and accuracy of the model were analyzed using gas well data from Weiyuan and Luzhou blocks in Sichuan Basin, China. The results appear that the reasonable application of TCA can greatly improve the prediction performance of shale gas well transfer learning model. For data sets of the same size, compared with the transfer learning model developed by classical machine learning algorithms, the proposed neural network-based transfer learning model can significantly improve the accuracy of production prediction across formations/blocks. In addition, the proposed model can also be extended to other types of oil and gas production prediction tasks cross formations/blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Ava应助专注的青荷采纳,获得10
刚刚
wwwhhh发布了新的文献求助10
1秒前
2秒前
Mic应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得200
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
YanDongXu应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
小lu应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Sun发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
YanDongXu应助科研通管家采纳,获得10
3秒前
终梦应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
Akim应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
维奈克拉应助科研通管家采纳,获得20
3秒前
3秒前
寻道图强应助科研通管家采纳,获得30
3秒前
Mic应助科研通管家采纳,获得30
3秒前
pluto应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
维奈克拉应助科研通管家采纳,获得20
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
周维发布了新的文献求助20
6秒前
7秒前
peace发布了新的文献求助10
7秒前
sidashu完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084